Demystifying Data Mining

Carol Brennan Baldan (Independent)

New York City Metro Area Group Meeting September 29th, 2005

Agenda

- Goal: Answer questions "What is data mining?" and "How can I get started?"
- Definition of "data mining"
 - Identify the types of business questions that data mining can address
 - Business issues to consider when choosing a data mining model
- Discussion of the structure of an inquiry using data mining
- Examples showing the uses of data mining – Business focus
- Overview of Oracle's data mining solution

What is Data Mining?

- "Mining" implies a quasi-random search through large quantities of data
 - This is misleading and over-simplified
- Data Mining actually involves building a model and using it to make decisions:
 - Use software to build a model
 - The model is based on the structure of our available (i.e. historical) data
 - Then, apply the model to new data to "predict the future"
 - With *many* caveats...

Decision Support: Two Viewpoints

- Normally, we use the known structure of our database to capture data using queries
- With data mining, we build a model based on patterns or structures that our modeling process finds *within* the data

Decision Support: Two Viewpoints Traditional:

Using the Model

Copyright C. B. Baldan 2005

The Model: Defined

- "Black box" that produces an answer to a question based on data fed into it
- Example: suppose we have built a model for answering the question "Should our company issue a credit card to this applicant?"

- Reconsider our earlier example: "Should our company issue a credit card to this applicant?"
 - Use age, income, and bank account balance to determine whether or not we should issue credit

Assume the following:

- To date, we have issued thousands of credit cards (or more...)
- For each account, we know the age, income, and bank account balance provided to us when the individual applied for the credit card
- We also know, for each account, if the card holder repeatedly made late payments, defaulted, went bankrupt, required legal action, attempted fraud, etc.
 - In hindsight, knowing what we now know, which applicants should we not have issued credit to?

• Put together historical data:

Age	Annual Income	Bank Acct Balance	Desirable? Yes/No
31	24000	1200	Yes
25	NULL	400	Yes
19	3000	13000	Yes
35	38000	NULL	No
67	28000	50000	No
NULL	97000	700	Yes

Build the model using this data

 Conceptually, the model "learns" which factors are indicators of an applicant's desirability

• Now, consider our new applicants:

Age	Annual Income	Bank Acct Balance	Desirable? Yes/No
NULL	32000	450	?
72	67000	1700	?
21	NULL	NULL	?
37	78000	250	?
28	NULL	600	?
26	12000	1350	?

 We apply the model to this new data to determine the "desirability" value:

Age	Annual Income	Bank Acct Balance	Desirable? Yes/No
NULL	32000	450	Yes
72	67000	1700	Yes
21	NULL	NULL	No
37	78000	250	Yes
28	NULL	600	No
26	12000	1350	Yes

 The model interprets the values of the three known fields and "decides" whether each applicant is desirable

- Can we be certain that the desirable applicants will always pay on time?
 - NO. But... data on our past experience indicates that they are *more likely than average* to always pay on time. This is still useful for our business.
- Can we keep using the same model indefinitely?
 - NO. We will continually open new accounts and get new data on desirability of account holders. Therefore, the body of our historical knowledge is always changing.

Building The Model

- Two distinct steps:
 - Generate and test the model using one set of data
 - Validate the model on another data set
- If the model is tuned too finely to the data set used to generate/test it, then the validation step will reveal this
 - This phenomenon is called "overfitting"
 - Likely if the original data set has too few data points or is not representative of "real" data

Building The Model

- Not adequate to just use two random samples from the same data pool – statistical tests needed
 - Commonly, we partition by time: Use historical data to build the model and more recent data to validate it
 - But, we need to be careful to not include data that is too old to be relevant in either data set...

Choosing a Model

Copyright C. B. Baldan 2005

The Model: Considerations

- There are many types of data mining models (probably hundreds!)
 - Vary by product
 - Most products offer a choice of several models
- Which model is "the best"?
 - It depends!
- Clarification on terminology:

 "Model" can refer to either the algorithm for building our decision-making "box" OR the specific framework created using our own data

The Model: Considerations

Factors that will influence your choice of model:

- Accuracy
 - *Note:* No model can achieve 100% accuracy
 - But, 70% guess is better than 50/50...

- Transparency: A model is most useful when business users understand what it does
 - Consider the sophistication of users, training
- Tolerance for Sparse or "Noisy" Data
 - Assess your ability to capture complete and correct data, then choose your model accordingly
- Others...

Some Common Data Mining Models

Copyright C. B. Baldan 2005

Supervised vs. Unsupervised Models

- Predictive Models (i.e. Supervised Learning Models):
 - Used to predict a value
 - "Supervised" because we specify one value (field) to predict by using the other available values (fields)
- Descriptive Models (i.e. Unsupervised Learning Models):
 - Used to find intrinsic patterns in data
 - "Unsupervised" because we do not specify any value to predict; we let the model find patterns in the data

Common Models

- Naïve Bayes (Predictive)
- Decision Trees (Descriptive)
- Association Rules (Descriptive)
 - These three models are common to many data mining products and are conceptually less complicated than many other models
- Not an exhaustive list

Naïve Bayes Model

- Uses probabilities to determine which of several "classes" a single data point belongs to
 - In our previous example, we had two classes: "Desirable credit card account holder" and "Undesirable credit card account holder"
 - Can have any finite number of classes
 - Based on Bayes' Rule (from statistics)

Naïve Bayes Model

- Model is "naïve" because it assumes that the value of each attribute is independent of the values of other attributes of data points within the same class
 - Not an appropriate model to use if we know that this is not the case
- Will show a specific example using this model later...

Decision Trees

- Sometimes referred to as "rule induction"
- Model specifies series of data "clusters"
 - Data points within clusters are similar (i.e. variance is minimized)
 - Differences between clusters are maximized
 - Determined using statistical methods
- We can then deduce rules for optimally separating data points into clusters

Decision Trees

One possible decision tree, built from our credit-card application data:

Association Rules

- Discovery technique (not predictive)
- Data set consists of transactions that each contain a set of items
 - Classic example: Items bought by one shopper at a supermarket
- Goal is to find items that occur together
 For example, hot dogs and hot dog buns

Reformatting Data

Copyright C. B. Baldan 2005

Reformatting Data

- Data may need to be reformatted or transformed before running a data mining algorithm against it
- Depends on several factors:
 - The product being used
 - The type of model being built
 - The business objective, i.e. the question you are attempting to answer

Reformatting Data

- For example, data mining products often require that data be stored in one "table", with one row per data point
 - In predictive models, model attempts to predict one column value based on the values of some or all other columns (as seen in our earlier example)
- The situation sometimes calls for discretization of values
- New fields may need to be derived from those in the data, if the derived value is relevant to the question

Oracle Data Mining (ODM)

Oracle Data Mining (ODM)

- When installed, encapsulates data mining functions within the database
 - Data, model, and results all contained within the Oracle database
 - Included in Enterprise Edition

Oracle Data Mining (ODM)

- Two interfaces:
 - 1. ODM Java API
 - 2. DBMS_DATA_MINING
- Actually two separate products not interoperable
- Different models available within each

ODM Models

• Predictive:

- Classification Models: Divide items into classes, generate rules for classifying items
 - Includes Naïve Bayes
- Regression Models: Approximate and forecast continuous values
- Attribute Importance Models: Identify attributes that carry the most "weight" in predicting the target value
 - Available within Java API only

ODM Models

- Descriptive:
 - Clustering Models: Identify "groupings" within the data
 - Association Rules: Identify values that often occur together
 - "Market basket"
 - Feature Extraction Models: Identify features that are combinations of other values

Data Preparation in ODM

- Java Interface works with prepared or unprepared data
- DBMS_DATA_MINING only works with prepared data
- Some models require "binning" (discretization) of variables
 - i.e. specify a continuous value as belonging to one of N "bins"

Data Preparation in ODM

- Only works with specific datatypes: VARCHAR2, CHAR, NUMBER, CLOB, BLOB, etc.
- Must convert DATEs to VARCHAR2 or NUMBER, depending on the meaning of the value
- May need to normalize values
 - Perform a conversion of a value such that the result follows the standard normal curve

Example Revisited: ODM

- Question: "Which applicants should we issue credit cards to?"
- Steps (using DBMS_DATA_MINING):
 - 1. Choose an appropriate mining algorithm for the problem. (Assume we have chosen Naïve Bayes.)
 - 2. Identify data for building/testing and validating the model
 - Oracle refers to the validation step as "scoring"
 - 3. Prepare the data using SQL, PL/SQL, third-party tools, or the DBMS_DATA_MINING package
 - In our case, we will need to discretize values we can do this with DBMS_DATA_MINING or by generating new tables

Example Revisited: ODM

– 4. Build a settings table

We can choose the name, but it must have this structure:

(setting_name VARCHAR2(30),

setting_value VARCHAR2(128))

- In our case, we will insert this setting: (algo_name, algo_naive_bayes)
- Other settings available which are specific to the Naïve Bayes model

Assume here that we are accepting defaults

Example Revisited: ODM

- 5. Create model using DBMS_DATA_MINING.CREATE_MODEL
- 6. Create a results table using DBMS_DATA_MINING.APPLY
- 7. Test/validate with new data using DBMS_DATA_MINING.COMPUTE (specific to Naïve Bayes and similar models)
- 8. Analyze tests/validations using statistical methods

Further Information

Copyright C. B. Baldan 2005

Additional Notes: ODM

- Other procedures included in DBMS_DATA_MINING
- Can mine "wide" data (i.e. records that exceed Oracle's column limit) with "multirecord case format" (provided)

Data Mining: General Issues

Technical

- Management of large data sets (e.g. data warehouse, "wide" data)
- Scalability, flexibility, speed
- Development resources
- Organizational
 - Availability of technical/model expertise
 - Confidence in imprecise "answers"
 - Potentially steep learning curve

Other Data Mining Products

SAS Data Mining

- SAS Enterprise Miner and SAS Text Miner
- http://www.sas.com/technologies/analytics/datamining /index.html
- WEKA (Waikato Environment for Knowledge Analysis)
 - http://www.cs.waikato.ac.nz/~ml/weka/index.html
 - Open source (GNU General Public License)
- CART (Classification and Regression Trees)
 - http://www.salford-systems.com/cart.php
 - Commercial product, 30-day evaluation available
- Many others...

Suggested Reading

- <u>Seven Methods for Transforming</u>
 <u>Corporate Data into Business Intelligence</u>,
 Vasant Dhar and Roger Stein
- Oracle 9.0.1/9.2/10g Data Mining Documentation
- Many Web sites...

Questions?

Copyright C. B. Baldan 2005

Thanks!

Carol Brennan Baldan

carol.baldan@patmedia.net or carolbv2@yahoo.com

Copyright C. B. Baldan 2005