Demystifying Data Mining

Carol Brennan Baldan
(Independent)

New York City Metro Area Group Meeting
September 29th, 2005
Agenda

• Goal: Answer questions “What is data mining?” and “How can I get started?”
• Definition of “data mining”
 – Identify the types of business questions that data mining can address
 – Business issues to consider when choosing a data mining model
• Discussion of the structure of an inquiry using data mining
• Examples showing the uses of data mining
 – Business focus
• Overview of Oracle’s data mining solution
What is Data Mining?

• “Mining” implies a quasi-random search through large quantities of data
 – *This is misleading and over-simplified*

• Data Mining actually involves building a model and using it to make decisions:
 – Use software to build a model
 – The model is based on the structure of our available (i.e. historical) data
 – Then, apply the model to new data to “predict the future”
 • With *many* caveats…
Decision Support: Two Viewpoints

- Normally, we use the known structure of our database to capture data using queries.
- With data mining, we build a model based on patterns or structures that our modeling process finds *within* the data.
Decision Support: Two Viewpoints

- **Traditional:**
 - Data
 - Known structure
 - SQL
 - Results (rows and columns)

- **Data mining model-based:**
 - Data
 - Reformatted data
 - Found structure
 - Model
 - Patterns or Predictions
Using the Model

Data → Reformatted data → Model → Patterns or Predictions
The Model: Defined

- “Black box” that produces an answer to a question based on data fed into it
- Example: suppose we have built a model for answering the question “Should our company issue a credit card to this applicant?”

| Age: 40 | Income: $100,000+/yr | Bank account balance: $10,000 | YES |
| Age: 7 | Income: $100/yr | Bank account balance: NULL | NO |
Using The Model: Example

• Reconsider our earlier example: “Should our company issue a credit card to this applicant?”
 – Use age, income, and bank account balance to determine whether or not we should issue credit

Age: 40
Income: $100,000+/yr
Bank account balance: $10,000

YES
Using The Model: Example

• Assume the following:
 – To date, we have issued thousands of credit cards (or more…)
 – For each account, we know the age, income, and bank account balance provided to us when the individual applied for the credit card
 – We also know, for each account, if the card holder repeatedly made late payments, defaulted, went bankrupt, required legal action, attempted fraud, etc.

• In hindsight, knowing what we now know, which applicants should we not have issued credit to?
Using The Model: Example

- Put together historical data:

<table>
<thead>
<tr>
<th>Age</th>
<th>Annual Income</th>
<th>Bank Acct Balance</th>
<th>Desirable? Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>24000</td>
<td>1200</td>
<td>Yes</td>
</tr>
<tr>
<td>25</td>
<td>NULL</td>
<td>400</td>
<td>Yes</td>
</tr>
<tr>
<td>19</td>
<td>3000</td>
<td>13000</td>
<td>Yes</td>
</tr>
<tr>
<td>35</td>
<td>38000</td>
<td>NULL</td>
<td>No</td>
</tr>
<tr>
<td>67</td>
<td>28000</td>
<td>50000</td>
<td>No</td>
</tr>
<tr>
<td>NULL</td>
<td>97000</td>
<td>700</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Build the model using this data
 - Conceptually, the model “learns” which factors are indicators of an applicant’s desirability
Using The Model: Example

Now, consider our new applicants:

<table>
<thead>
<tr>
<th>Age</th>
<th>Annual Income</th>
<th>Bank Acct Balance</th>
<th>Desirable? Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>32000</td>
<td>450</td>
<td>?</td>
</tr>
<tr>
<td>72</td>
<td>67000</td>
<td>1700</td>
<td>?</td>
</tr>
<tr>
<td>21</td>
<td>NULL</td>
<td>NULL</td>
<td>?</td>
</tr>
<tr>
<td>37</td>
<td>78000</td>
<td>250</td>
<td>?</td>
</tr>
<tr>
<td>28</td>
<td>NULL</td>
<td>600</td>
<td>?</td>
</tr>
<tr>
<td>26</td>
<td>12000</td>
<td>1350</td>
<td>?</td>
</tr>
</tbody>
</table>
Using The Model: Example

- We apply the model to this new data to determine the “desirability” value:

<table>
<thead>
<tr>
<th>Age</th>
<th>Annual Income</th>
<th>Bank Acct Balance</th>
<th>Desirable? Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>32000</td>
<td>450</td>
<td>Yes</td>
</tr>
<tr>
<td>72</td>
<td>67000</td>
<td>1700</td>
<td>Yes</td>
</tr>
<tr>
<td>21</td>
<td>NULL</td>
<td>NULL</td>
<td>No</td>
</tr>
<tr>
<td>37</td>
<td>78000</td>
<td>250</td>
<td>Yes</td>
</tr>
<tr>
<td>28</td>
<td>NULL</td>
<td>600</td>
<td>No</td>
</tr>
<tr>
<td>26</td>
<td>12000</td>
<td>1350</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- The model interprets the values of the three known fields and “decides” whether each applicant is desirable.
Using The Model: Example

• Can we be certain that the desirable applicants will always pay on time?
 – NO. But… data on our past experience indicates that they are *more likely than average* to always pay on time. This is still useful for our business.

• Can we keep using the same model indefinitely?
 – NO. We will continually open new accounts and get new data on desirability of account holders. Therefore, the body of our historical knowledge is always changing.
Building The Model

- Two distinct steps:
 - Generate and test the model using one set of data
 - Validate the model on another data set
- If the model is tuned too finely to the data set used to generate/test it, then the validation step will reveal this
 - This phenomenon is called “overfitting”
 - Likely if the original data set has too few data points or is not representative of “real” data
Building The Model

• Not adequate to just use two random samples from the same data pool – statistical tests needed
 – Commonly, we partition by time: Use historical data to build the model and more recent data to validate it
• But, we need to be careful to not include data that is too old to be relevant in either data set…
Choosing a Model

Data → Reformatted data → Model → Patterns or Predictions
The Model: Considerations

• There are many types of data mining models (probably hundreds!)
 – Vary by product
 – Most products offer a choice of several models

• Which model is “the best”?
 – *It depends!*

• Clarification on terminology:
 – “Model” can refer to either the algorithm for building our decision-making “box” OR the specific framework created using our own data
The Model: Considerations

- **Factors that will influence your choice of model:**
 - **Accuracy**
 - *Note:* No model can achieve 100% accuracy
 - But, 70% guess is better than 50/50…
 - **Transparency:** A model is most useful when business users understand what it does
 - Consider the sophistication of users, training
 - **Tolerance for Sparse or “Noisy” Data**
 - Assess your ability to capture complete and correct data, then choose your model accordingly
 - Others…
Some Common Data Mining Models

- Data
- Reformatted data
- Model
- Patterns or Predictions
Supervised vs. Unsupervised Models

- **Predictive Models (i.e. Supervised Learning Models):**
 - Used to predict a value
 - “Supervised” because we specify one value (field) to predict by using the other available values (fields)

- **Descriptive Models (i.e. Unsupervised Learning Models):**
 - Used to find intrinsic patterns in data
 - “Unsupervised” because we do not specify any value to predict; we let the model find patterns in the data
Common Models

- Naïve Bayes (Predictive)
- Decision Trees (Descriptive)
- Association Rules (Descriptive)
 - These three models are common to many data mining products and are conceptually less complicated than many other models
- *Not an exhaustive list*
Naïve Bayes Model

• Uses probabilities to determine which of several “classes” a single data point belongs to
 – In our previous example, we had two classes: “Desirable credit card account holder” and “Undesirable credit card account holder”
 – Can have any finite number of classes
 – Based on Bayes’ Rule (from statistics)
Naïve Bayes Model

• Model is “naïve” because it assumes that the value of each attribute is independent of the values of other attributes of data points within the same class
 – Not an appropriate model to use if we know that this is not the case
• Will show a specific example using this model later...
Decision Trees

- Sometimes referred to as “rule induction”
- Model specifies series of data “clusters”
 - Data points within clusters are similar (i.e. variance is minimized)
 - Differences between clusters are maximized
 - Determined using statistical methods
- We can then deduce rules for optimally separating data points into clusters
Decision Trees

• One possible decision tree, built from our credit-card application data:
Association Rules

- Discovery technique (not predictive)
- Data set consists of transactions that each contain a set of items
 - Classic example: Items bought by one shopper at a supermarket
- Goal is to find items that occur together
 - For example, hot dogs and hot dog buns
Reformatting Data

Data → Reformatted data → Model → Patterns or Predictions
Reformatting Data

• Data may need to be reformatted or transformed before running a data mining algorithm against it

• Depends on several factors:
 – The product being used
 – The type of model being built
 – The business objective, i.e. the question you are attempting to answer
Reformatting Data

- For example, data mining products often require that data be stored in one “table”, with one row per data point
 - In predictive models, model attempts to predict one column value based on the values of some or all other columns (as seen in our earlier example)
- The situation sometimes calls for discretization of values
- New fields may need to be derived from those in the data, if the derived value is relevant to the question
Oracle Data Mining (ODM)

Data → Reformatted data → Model → Patterns or Predictions
Oracle Data Mining (ODM)

- When installed, encapsulates data mining functions within the database
 - Data, model, and results all contained within the Oracle database
 - Included in Enterprise Edition
Oracle Data Mining (ODM)

- Two interfaces:
 1. ODM Java API
 2. DBMS_DATA_MINING
- Actually two separate products – *not* interoperable
- Different models available within each
ODM Models

• Predictive:
 – **Classification Models**: Divide items into classes, generate rules for classifying items
 • Includes Naïve Bayes
 – **Regression Models**: Approximate and forecast continuous values
 – **Attribute Importance Models**: Identify attributes that carry the most “weight” in predicting the target value
 • Available within Java API only
OMD Models

• **Descriptive:**
 – **Clustering Models:** Identify “groupings” within the data
 – **Association Rules:** Identify values that often occur together
 • “Market basket”
 – **Feature Extraction Models:** Identify features that are combinations of other values
Data Preparation in ODM

• Java Interface works with prepared or unprepared data
• DBMS_DATA_MINING only works with prepared data
• Some models require “binning” (discretization) of variables
 – i.e. specify a continuous value as belonging to one of N “bins”
Data Preparation in ODM

- Only works with specific datatypes: VARCHAR2, CHAR, NUMBER, CLOB, BLOB, etc.
- Must convert DATEs to VARCHAR2 or NUMBER, depending on the meaning of the value
- May need to normalize values
 - Perform a conversion of a value such that the result follows the standard normal curve
Example Revisited: ODM

• Question: “Which applicants should we issue credit cards to?”
• Steps (using DBMS_DATA_MINING):
 – 1. Choose an appropriate mining algorithm for the problem. (Assume we have chosen Naïve Bayes.)
 – 2. Identify data for building/testing and validating the model
 • Oracle refers to the validation step as “scoring”
 – 3. Prepare the data using SQL, PL/SQL, third-party tools, or the DBMS_DATA_MINING package
 • In our case, we will need to discretize values – we can do this with DBMS_DATA_MINING or by generating new tables
Example Revisited: ODM

4. Build a settings table

- We can choose the name, but it must have this structure:

 \[
 \text{(setting_name VARCHAR2(30), setting_value VARCHAR2(128))}
 \]

- In our case, we will insert this setting:

 \[
 \text{(algo_name, algo_naive_bayes)}
 \]

- Other settings available which are specific to the Naïve Bayes model

 - Assume here that we are accepting defaults
Example Revisited: ODM

5. Create model using `DBMS_DATA_MINING.CREATE_MODEL`

6. Create a results table using `DBMS_DATA_MINING.APPLY`

7. Test/validate with new data using `DBMS_DATA_MINING.COMPUTE` (specific to Naïve Bayes and similar models)

8. Analyze tests/validations using statistical methods
Further Information

Data → Reformatted data → Model → Patterns or Predictions
Additional Notes: ODM

- Other procedures included in DBMS_DATA_MINING
- Can mine “wide” data (i.e. records that exceed Oracle’s column limit) with “multi-record case format” (provided)
Data Mining: General Issues

- Technical
 - Management of large data sets (e.g. data warehouse, “wide” data)
 - Scalability, flexibility, speed
 - Development resources

- Organizational
 - Availability of technical/model expertise
 - Confidence in imprecise “answers”
 - Potentially steep learning curve
Other Data Mining Products

• SAS Data Mining
 - SAS Enterprise Miner and SAS Text Miner

• WEKA (Waikato Environment for Knowledge Analysis)
 - Open source (GNU General Public License)

• CART (Classification and Regression Trees)
 - Commercial product, 30-day evaluation available

• Many others…
Suggested Reading

• **Seven Methods for Transforming Corporate Data into Business Intelligence**, Vasant Dhar and Roger Stein
• **Oracle 9.0.1/9.2/10g Data Mining Documentation**
• **Many Web sites…**
Questions?
Thanks!

Carol Brennan Baldan

carol.baldan@patmedia.net or
carolbv2@yahoo.com