
Recoding Slow Correlated
Subqueries for Fast Results

© Stillman Real Consulting, LLC 2005

Presented at New York Oracle User Group
General Meeting March 10, 2005

About the Author
• B.S. Chemistry (1991)

University of California
San Diego.

• Focus in Mathematics of
Mappings.

• Minor in Fine Art.
• Ten years experience providing

enterprise DBA services.
• Managing Partner,

Stillman Real Consulting, LLC
http://www.netsrc.us/flash

Special Thanks
• New York Oracle User Group

Presentation Review Panel.
• Dennis Curran & Gary Hoffman

EZTime Project
 Emerging Health Information Technologies

• Dr. Yelena Belyaeva-Standen
 Professor of Russian Language

Dept. of Modern and Classical Languages
St. Louis University

 And….Mom !

Recoding for Fast Results !

• Application of Mapping
Theory to PL/SQL problems.

• Generic program model.

• Snap-on program elements !

Requirements of Coding Method

• Mapping Theory Basics

• PL/SQL Basics

Nothing more is required !

Mapping Theory is Fun…

 …and EASY !
• Gives extended and new vision into

coding problems in PL/SQL.
• Must understand CLEARLY only

the basic concepts of Map Theory.
• Map theory allows generic PL/SQL

to be used very effectively!

Advantage of this Coding Method

• Easy, reliable, small set of
PL/SQL program elements !

• Minimal knowledge of PL/SQL
can yield BIG RESULTS
quickly !

Essential Mapping Theory

• Domain
• Mapping
• Target

Definition of a Domain

• This symbol means:
Domain

• This symbol denotes
appropriate input to
the mapping.

Definition of a Mapping
• This symbol means:

Mapping.
• This symbol denotes the

process of mapping, rather
than the end-result of the
mapping.

•f can be “imagined as a
machine with input and output
whose operation mimics the
mapping process.”

When an appropriate

input is fed to f the

machine gives an output

corresponding to f()

Mapping as a Machine

D

f()

f

We call f() the image of under f =

Selecting the Domain

• “Choosing the domain is
equivalent to assigning to the
elements that belong to that set a
coded key that will cause the
machine to operate.”

R.F. Wheeler

Definition of the Target

• This symbol means:
Target.

• This symbol T denotes
any set to which all
the images of D under
mapping f belong.

Mapping Theory and SQL
Example 1

Select deptno, deptname, city, employees
from dept
where city = ‘NYC’

• The select list column names hold values in them that
are the domain D.

• Values in the select list column CITY are the
“domain keyholes”

• Where clause prepares the mapping.
• This mapping f accepts values of column CITY.

The Coded Keys

• The coded keys are a
set of unique values
that are used to map
each row to its image
f() .

• The set of coded keys
is given by the sql:
select distinct city
from dept

NYC

CHI

Domain Keyholes

• Each row is a “domain
keyhole”.

• Each row in the dept
table is tested with one
of the coded keys.

• The coded key in this
example is NYC.

•This row fits
the unique
pseudokey.

•The
pseudokey
gains entry to
the domain
keyholes.
•Other
columns in
select list “go
along for ride”

NYC

Mapping Rows by Unique Pseudokey

Technical Detail of Mapping

CITY

NYC

not NYC

Features of this Simple Mapping
• Each row in the domain has one and only

one image under the mapping f.

• The mapping f maps the rows to their
unique images in the target T.

• The images of the rows are a 2 value set !
{ (NYC), (not NYC) }

• The image of a row from the domain D
under mapping f is not the select list of the
query !

More on Images
• The target of the mapping is a set of two

values {NYC, not NYC} or {ON, OFF}.
• The values of the select list of the cursor

FOR Loop are part of the image but they are
not visible to us at the time of the mapping.

• The result set {ON, OFF} and the result set
(select list of the cursor FOR Loop) are
orthogonal sets.

• Let’s talk briefly about orthogonal sets …

Orthogonal Sets
• We map the rows to one box that has NYC

off, and one box that has NYC on.
• We cannot “see” the box so the attribute

“NYC box YES” or “NYC box NO” must be
attached to the row itself.

• When we look at the rows for the purpose of
mapping, we only look at the END of the row,
where we see only the {ON, OFF} attribute
showing {NYC, not NYC}.

The Image We Want
• We generally want to

know the values of the
select list columns in the
cursor FOR loop for
rows which mapped to
NYC = ON.

• We accomplish in
mapping theory by
rotating the row 90
degrees to reveal the
select list attributes of
the row.

Orthogonal Sets

More Features of Simple Mapping

• The select list column names of the query are a
group of attributes which can accompany the
domain keyhole column of CITY.

• Different select list column names are possible for
the domain keyhole column of CITY.

• For a given value assigned to the keyhole column
of CITY, there can be many rows keyed to that
value of keyhole column CITY.

• For example, there are many rows which have
keyhole column CITY value ‘NYC’.

Important to Understand

• Values of CITY are ultimately reduced by
the computing system to a switch that is ON
or OFF.

• This is all that computers can do:
Test if a switch is on or off.

• When values of CITY are tested:
ON = NYC
OFF = not NYC

Reminder

• The images of the rows in the domain D
under the mapping f are a set of only 2 values !

{(NYC), (not NYC)}
ON OFF

Alternate Images

• The data we want, the select list columns
from the cursor FOR loop are available to
us.

• We find rows that have the “NYC” set to
“ON” then conceptually, we rotate the row
through a right angle (90 degrees) to see the
image of the row in terms of the cursor FOR
Loop select list columns !

Another Way of Looking at IT
• The rows mapped by the PL/SQL program to

the desired result set can be viewed from
different angles, perspectives, viewpoints.

• When we map on a key, we take the row,
visualize it as a long rod, and slide it into a
rack with it’s round end facing us. Each end
is marked ON or OFF.

• Rows marked ON are removed from the rack
at read time and the values of the columns
along the length of the bar are read to the
user.

Simple Correlated Subquery
Example 2

SELECT P.ENAME, P.DEPTNO, P.SAL
FROM EMP P
WHERE
SAL > (SELECT AVG(SAL)
 FROM EMP A
 WHERE P.DEPTNO = A.DEPTNO);
ORDER BY DEPTNO, SAL;

Mapping Theory and SQL
Example

• The select list column names hold values in them
that are the domain D.

• In this example the “coded key” is actually two
keys of DEPTNO and AVG(SAL).

• Where clause prepares the mapping.
• Each mapping f accepts values of each part of

the compound key which represent pairs of
UNIQUE values (DEPTNO, AVG(SAL)).

The Coded Keys

• The coded keys are a set of
unique values that are used to
map each row to its image f()

• The set of coded keys is given by
the sql:

select deptno, avg(sal)
from dept

 group by deptno

New Features of this Example

• This key graphic is made up of
“two keys” because two keys
are required in this case for the
mapping values to be UNIQUE.

Domain Keyholes

• Each row is again a
“domain keyhole”.

• Each row in the emp table
is tested with each of the
coded keys.

• The coded keys in this
example are made from

 (DEPTNO, AVG(SAL)).

New Features of Example 2

• There is a SET of coded keys this time,
where before there was only ONE key.

• This is because AVG(SAL) alone is not
sufficient to map values of SAL to the
{(ON),(OFF)} set.

• That is why this is often called a correlated
subquery “mimic” of a “group by”.

Technical Detail of Mapping

SAL

AVG(SAL)

AVG(SAL)

>
<

We want employees that have

SAL > AVG(SAL)

for each distinct deptno.

Another function computes
AVG(SAL) grouped by
each distinct deptno

Features of this Simple Mapping

• Each row in the domain has one and only
one image under the mapping f.

• The mapping f maps the rows to their
images T the target.

• The images of the rows are a SET of sets !

Additional Features of Example 2

• The image of a row from the domain D
under mapping f is not the select list of the
query.

Reminder
• The images of the rows in the domain D under the

mapping f are a SET of targets T where each target T
is a set of only 2 values !

 {(sales dept),(not sales dept)}
ON OFF

{(> AVG(SAL)sales), (< AVG(SAL)sales)}
ON OFF

• For each deptno there is a target T that consists of the
two value set.

Caveat
• Mapping of a row in the domain D requires one or

more unique values in a “mapping set” to which
domain keyhole values are compared.

IS

IS

NOT

ISMAPPERDOMAIN

• Cursor k1 is the “mapping set”.

Let’s Start to Tie this Theory to
PL/SQL

• PL/SQL must obey mapping theory
• If we can determine how our various

program steps tie back to map theory, we
can see where our mapping steps are
efficient and where they are not.

• In this presentation we only work with a
small set of PL/SQL constructs.

• These few constructs can do wonders !

Our PL/SQL “Snap-on” Toolset

• Cursors

• Cursor FOR loop

• Cursor FOR loop WHERE clauses

Note to PL/SQL Expert Coders

• More advanced PL/SQL coders can use additional,
more sophisticated elements of PL/SQL, subject to
the following requirements:

• MUST clearly understand which map theory element
corresponds to your add-on tool (domain, mapping,
target).

• Add-on tools correspond to one and ONLY one of the
three map theory concepts.

Names of our “Snap-on” Tools

• Cursors: k1, c1

• Cursor FOR loop

• Cursor FOR loop WHERE
clauses

Each snap-on tool corresponds one and
only one element of function theory…

Snap-On Tool:
Cursor k1

• Specifies the mapping (f)

• Nickname:
 “Unique Pseudokey”

Snap-on Tool:
Cursor c1

• Part of the specification of
the Domain

• Nickname:
“Domain Builder”

Snap-on Tool
WHERE clause(s) of cursor FOR loop

• Part of the mapping (f)
• Tests each domain lock with

unique pseudokey(s)

• Nickname:
“Image Preprocessor”

The Mapping Theory
• In the Snap-On tool slides we saw the

Domain, Mapping, and Image.

• Those are the only fundamental
mapping concepts that are needed.

• Domain elements are mapped to their
images by the mapping.

Mapping Theory

• The domain is specified first.

• The mapping maps domain elements to their
images in the target.

• Each domain element has ONE AND ONLY
ONE image in the target.

• We can represent the process graphically.

Creating a table for the target T

• Output images (rows) reside in a special
result table.

• We call “QRS_TABLE_NAME” the
“Query Result Set” which is a table
created to hold our image results of the
mapping.

The Cursor FOR Loop WHERE clauses :

• Deliver rows for cursor k1 which meet all
other criteria and are ready to be
mapped by the Unique Pseudokey.

 However, it is very worthwhile to think
about the Cursor FOR Loop WHERE
clauses more…

Pondering the Cursor FOR Loop
WHERE Clause Conceptually

• Let’s think some more
about the Cursor FOR
Loop WHERE Clause

• It’s a hot spot and
there’s action there !

Keeping Harry Happy

• We can think
about someone
named Harry who
likes to toss paper
airplanes through
the air and see
how well they
fly…

Let’s Look at Cursor c1
“Domain Builder”

• Pieces of paper are required to make paper airplanes.
• Harry can fold airplanes much faster if he has entire

sheets of rectangular paper, not just odd-shapes.
• If the sheets are in shreds and he has to tape them

together to make a rectangle it slows him down A
LOT

• We use cursor(s) c1 to get square pieces of paper
ready for Harry. We use temp tables because Harry
needs real sheets of paper ready at hand, not “virtual”
sheets of paper

Tip

• Use cursor c1 to perform a complex join
ONCE and then store the results to a TEMP
table for processing in the cursor FOR loop.

Let’s Look at Cursor FOR Loop
Where Clauses

• Once the pieces of paper have been prepared by
cursor c1, Harry has to fold them into airplanes
with his hands.

• Harry’s hands are his Cursor FOR Loop WHERE
clause(s).

• The cursor FOR Loop WHERE clause(s) select
and fold up into airplanes the pieces of paper that
Harry will waft with his right hand.

Cursor FOR Loop Where Clauses
Continued…

• In PL/SQL the Cursor FOR Loop WHERE
clause(s) identify all rows that meet the mapping
criteria.

• All rows which meet the Cursor FOR Loop
WHERE clause criteria MUST be mapped by the
Unique Pseudokey to ONE and ONLY one image
in the target (the paper airplane cannot land “in
two places at once”).

Let’s Look at Cursor k1
“Unique Pseudokey”

• Once Harry’s hands have folded the paper, Harry
is ready to toss them to the target.

• Harry takes each folded plane and wafts it toward
the target.

• The unique pseudokey determines where that
plane will land. The unique pseudokeys in
Harry’s case are random factors: air currents, lift
and drag coefficients, Harry’s toss motion,
airplane folding …

“Unique Pseudokey”
continued…

• In PL/SQL of course, the factors that determine where
the rows that meet the criteria of the Cursor FOR Loop
WHERE clauses will map (where the airplanes will
land) are not random.

• In PL/SQL Harry’s life is far more boring. The
elements map according to a set of rules and numbers.
Harry’s job is more like that of an accountant, and less
like flying airplanes…

• Harry has to compare a bunch of numbers and sift
through the rows to figure out where they go; where
they MAP to !

Understanding Cursor k1 Better

• The “Unique Pseudokey” is that value or
combination of values that determine where a
row is going to land in the target.

Get the Picture ?

• That is why the Unique Pseudokey is the
specification of the mapping.

• The Cursor FOR Loop WHERE clauses
select the rows…

• …And the Unique Pseudokey maps them to
the target !

Remember

• Any PL/SQL snap-on tool that you want to
use should play a clear role in the Theory.

• First figure out if it’s part of domain
preparation, or if it’s part of mapping.

• Think of Harry and what makes him
happiest and you will have faster running
code than you had before !!

Big Results can be Achieved !

Harry helped me to see
how to recode a
batch job that took

34 HOURS
 into a PL/SQL

process that
completed in

12 SECONDS !

Harry’s Intuitive Coding
(continued…)

• When a correlated subquery has a
complicated join in the outer query, a good
starting point is to use cursor c1 to do that
join and then insert those rows into a
temporary table.

• The temporary table is initialized inside the
PL/SQL stored procedure and is accessed in
the cursor FOR Loop.

Ways We Think About Coding
• Do you ever feel like you’re in a maze when you

are trying to recode ?
• People talk a lot about things like “parses”, “bind

variables”, “wait times” and other rather technical
outlooks on coding.

• These are great, very valid ideas that do work, but
these ideas are not very intuitive.

• Not very accessible for DBA’s like me who don’t
code all day long for a living, only when called
upon now and then to code !

Tips

• Build cursor k1, the Unique Pseudokey, from the
column(s) of the outer query that are used as the
correlated select criteria in the inner correlated
subquery.

• When building a Unique Pseudokey for a
correlated subquery that acts as a “group by” you
must include the group by column as part of the
specification of the Unique Pseudokey.

Coding a “Unique Pseudokey”

• Create or replace procedure procname is
cursor k1 is select unique pseudokey

from…
• cursor c1 is select domain columns

from…

The Answers to these Questions…

• Is something that you must figure out. The
required things that you must determine in
your recoding effort are the following:

• The function “where clauses”
• The function “unique pseudokey”
• The domain specification
• The result set

Specifying the Mapping

• The mapping is the the unique
pseudokey (cursor k1) !

Additional Domain Specification

• CURSOR c1 is used build domain
preprocessing tables (if needed) to simplify
the work of the cursor FOR Loop.

• CURSOR c1 is OPTIONAL
• CURSOR c1 can be very powerful when

you have a domain built from views that are
themselves complex joins of multiples tables
!

Elementary Recoding Example

SELECT P.ENAME, P.DEPTNO, P.SAL
FROM EMP P
WHERE
SAL > (SELECT AVG(SAL)
 FROM EMP A
 WHERE P.DEPTNO = A.DEPTNO);
ORDER BY DEPTNO, SAL;

Identify the PL/SQL Specs…

• We have to translate this original code
into the PL/SQL block

• The domain is …
• The function is…
• The images are…
• Sometimes it’s not easy to see at first, but

it’s worth the effort !

deptno avsal
deptno avsal

The Unique Pseudokey for the AVG(SAL) Problem
This is cursor k1. It is part of the specification of the
function!

Images are Often Easiest to ID…

• The orthogonal images are rows of (ename,
deptno, sal)

• The domain is clearly EMP
• The mapping is all rows where
 SAL > AVG(SAL) for that department.

Now build the PL/SQL !

Did you see the episode of “The Great
Race” where they had a key and they
had to find the lock on the long bar to
which hundreds of locks had been
attached in which the key would fit and
open the lock ? Our PL/SQL construct
does just this…

The Great Race !

Reliable Coding Tips
• Do not nest a cursor for loop inside of any

domain pre-processing cursors.
• Stick with the basic PL/SQL structure for

reliable results when using the methods
described here.

• CLOSE all domain preprocessing cursors
BEFORE opening the Cursor FOR Loop !

• Advanced coders will probably see ways to
create domain preprocessing cursors that
“feed” planes to Harry rather than fill a box.

•Which rows match DEPTNO ?

•Which rows also have SAL > AVG(SAL) ?

•Cursor c1 rows: the “keyholes”!

•Cursor k1 rows: the pseudokeys !

Cursor k1
FOR loop finds
where keys fit
keyholes !

Generic PL/SQL : Section 1

CREATE OR REPLACE PROCEDURE

 SCHEMA.PROCNAME IS

 CURSOR k1 is ...;

 CURSOR c1 is ...;

 DOMAIN_REC1 c1%ROWTYPE;

 KEY_REk1 k1%ROWTYPE;

 QRS_REC QRS%ROWTYPE;

Generic PL/SQL : Section 2

BEGIN

initialize domain preprocess table

EXECUTE IMMEDIATE ‘truncate…’;

initialize target table

EXECUTE IMMEDIATE ‘truncate…’;

TIP: Use EXECUTE IMMEDIATE not DELETE FROM !

Generic PL/SQL : Section 3
OPEN c1;

 LOOP

 FETCH c1 INTO REC1;

 EXIT WHEN c1%NOTFOUND;

 populate preprocess

 domain table

 COMMIT;

 END LOOP;

 CLOSE c1;

Generic PL/SQL : Section 4

OPEN k1;

 LOOP

 FETCH k1 into REk1;

 EXIT WHEN k1%NOTFOUND;

 FOR QRS_REC IN

 map domain rows

 using f(where, cursor k1)...

Generic PL/SQL : Section 5

LOOP

 insert mapped values into

 target table

COMMIT;

 END LOOP;

 END LOOP;

 CLOSE k1;

END;

Types of Unique Pseudokey

• There is the “key value” such as a column that is
already unique, such as “employee number” or
“empno”

• There is the compound type unique pseudokey,
which sorts values of the domain into target sets,
typically values “above” a certain value and values
“below” a certain value.

Unique Pseudokey Types

• A sorting unique pseudokey (typically a
compound key) usually acts as a FILTER or
SORTER (think of the AVG(SAL) example…we
needed DEPTNO too to make the key useful).

• A primary unique pseudokey (such as empno, a “natural”
unique key because it is intrinsically unique with no further
specification) usually acts as a unique IDENTIFIER or
POINTER. It FOCUSES the function on the specific
domain element that we wish to image under the function.

SELECT O.PARTNUM, SUM(O.QUANTITY*P.PRICE),
COUNT(PARTNUM)

FROM ORDERS O, PART P

WHERE P.PARTNUM = O.PARTNUM

GROUP BY O.PARTNUM

HAVING SUM(O.QUANTITY*P.PRICE) >

(SELECT AVG(O1.QUANTITY*P1.PRICE)

FROM PART P1, ORDERS O1

WHERE P1.PARTNUM = O1.PARTNUM

AND P1.PARTNUM = O.PARTNUM)

Another correlated subquery recoding challenge…

Partnum is a natural unique pseudokey. It’s a pointer type
pseudokey, not a filter…

We’ve seen our correlated subqueries in the select list of the
outer query, and also in the where clause of the outer query,
but now we have a correlated subquery in the “having” clause
of the group by.

This example is interesting because the having clause is a
SORTER type filter while the partnum as mentioned above is
a POINTER type unique pseudokey. What do we get when
we recast this “east meets west” type situation in our PL/SQL
construct ?

Let’s see…

SELECT O.PARTNUM,
 SUM(O.QUANTITY*P.PRICE) as "SUM_ORDERS",
 COUNT(O.PARTNUM)
FROM ORDERS O, PART P
WHERE P.PARTNUM = O.PARTNUM
GROUP BY O.PARTNUM
HAVING SUM(O.QUANTITY*P.PRICE) >
 (SELECT AVG(OO.QUANTITY*PP.PRICE)
 FROM PART PP, ORDERS OO
 WHERE PP.PARTNUM = OO.PARTNUM
 AND PP.PARTNUM = O.PARTNUM);

Example: Correlated Subquery Mimics a “Group By”

Rewrite in PL/SQL as follows…

Create Supporting Tables
DROP TABLE schema.temp_table_1B;
CREATE TABLE schema.temp_table_1B
(PARTNUM NUMBER(20),
 SUM_ORDERS NUMBER(20),
 NUM_ORDERS NUMBER(20))
tablespace TOOLS;

• Create the tables to do
the domain pre-
processing and

• Create the table to
hold the images under
the mapping.

DROP TABLE schema.QRS_ORD_RECS;

CREATE TABLE schema.QRS_ORD_RECS

(PARTNUM NUMBER(20),

 SUM_ORDERS NUMBER(20),

 NUM_ORDERS NUMBER(20))

tablespace TOOLS;

Cursor k1
 “compound unique pseudokey”

CREATE OR REPLACE PROCEDURE
schema.OPS_QRS_WTT IS

 CURSOR k1 IS
 SELECT o.partnum,
AVG(o.quantity*p.price) as "AVG_ORDERS"

 FROM ORDERS o, PART p
 WHERE o.partnum = p.partnum
 GROUP by o.partnum;

Cursor c1
Domain Pre-processing

 CURSOR c1 IS
 SELECT O.PARTNUM,

SUM(O.QUANTITY*P.PRICE) as "SUM_ORDERS",
COUNT(O.PARTNUM) as "NUM_ORDERS"

 FROM ORDERS O, PART P
 WHERE P.PARTNUM = O.PARTNUM
 GROUP BY O.PARTNUM;

Cursor c1 pre-calculates the sum() and count() so that
the domain is pre-processed…

Prepare the Pipeline…
ORD_REC1 c1%ROWTYPE;
ORD_REk1 k1%ROWTYPE;
QRS_REC schema.QRS_ORD_RECS%ROWTYPE;
BEGIN
 EXECUTE IMMEDIATE 'truncate table

schema.temp_table_1B';
 EXECUTE IMMEDIATE 'truncate table

schema.qrs_ord_recs';

The new thing to realize about these old friends is
that they will transmit domain elements to their
images under the mapping…

Cursor c1…
 “Domain Builder”

Open c1;
LOOP
FETCH c1 INTO ORD_REC1;
EXIT WHEN c1%NOTFOUND;
insert into schema.temp_table_1B
values
 (ord_rec1.PARTNUM,
 ord_rec1.SUM_ORDERS,
 ord_rec1.NUM_ORDERS);
commit;
END LOOP;
 close c1;

Cursor k1
“Mapper” aka “Unique Pseudokey” aka “Function”

 open k1;
 LOOP
 FETCH k1 into ORD_REk1;
 EXIT WHEN k1%NOTFOUND;
 FOR QRS_REC IN
 (select PARTNUM, SUM_ORDERS, NUM_ORDERS
 from schema.temp_table_1B
 where SUM_ORDERS > ORD_REk1.AVG_ORDERS
 and PARTNUM = ORD_REk1.PARTNUM)
 LOOP
 insert into schema.QRS_ORD_RECS
 values (QRS_REC.PARTNUM,
 QRS_REC.SUM_ORDERS, QRS_REC.NUM_ORDERS);
 COMMIT;
 END LOOP;

The Basic Strategy

• Simplify any complex domains by
preprocessing of domain and generous
use of temporary tables to hold
intermediate results.

• Use the same programming construct
over and over.

• Performance gains are dramatic and
often as number of joins in domains are
reduced by use of intermediate
processing tables

References

• Rethinking Mathematical Concepts, R. F.
Wheeler Ellis Horwood, John Wiley & Sons,
US Publishers, 1981.

Probably the best book of which I am aware
that clearly explains mapping theory on a
level that is both theoretically sound and
practically useful.

