Oracle Data Guard for High Availability and Disaster Recovery

John Zhong
Senior Technical Specialist
Global Database Management Group
Citigroup
and
Vice President of
American DBAOnline

John_j_zhong@yahoo.com
Agenda

- Data Guard Overview
- Data Guard 10g New Features
- Data Guard Configuration
- Automatic Gap Detection and Resolution
- Redo Shipping with LGWR
- Data Protection Modes
- Managing Data Guard
- Monitoring Data Guard
- High Availability and Disaster Recovery
Data Guard Overview

• Data Guard Configurations
 – Primary Database
 – Standby Databases
• Data Guard Services
 – Log Transport
 – Log Apply
 – Role Management
• Data Protection Modes
• Data Guard Broker
Data Guard Overview

Data Guard Configuration

Primary Database

Archived Redo Logs

Redo Data

Apply Redo Logs

Physical Standby Database

Disaster Recovery Database Backup Operations

Oracle Net

Archived Redo Logs

Redo Data

Transform Redo Data into SQL Statements

Execute SQL Statements

Logical Standby Database

Disaster Recovery Reporting Operations
Data Guard Overview

Data Guard Configuration: Physical Standby Database
Data Guard Features

- Automatic log shipping
- Automatic redo gap detection and resolution
- Redo shipping using LGWR
- Data protection modes
- Role transition management
 - Failover and Switchover
Data Guard 10g New Features

• Real Time Apply
• Flashback Database Integration
 – Flashback standby after OPEN RESETLOGS on primary, and remove the need to recreate standby.
 – Flashback failed primary after failover and convert it to a standby.
• New Default Behavior for the STARTUP, MOUNT, and OPEN Statements on Physical Standby
• RAC Integration
• Simplified Browser-based Interface Focused on Best Practices
Data Guard 10g New Features

Real Time Apply
No Delay!

Primary Database
Redo Shipment
Flashback Log

Primary: No reinstatement after failover!

Standby Database
Flashback Log

Real Time Reporting
Data Guard Configuration

• Creating a physical standby database
 – Tasks on primary
 – Tasks on standby
Data Guard Configuration – Tasks on Primary

• Enable archiving:
 – Database in ARCHIVELOG mode
 – Set local archive destination: LOG_ARCHIVE_DEST_1
 – Enable automatic archiving:
 log_archive_start = true
 or alter system archive log start;
Data Guard Configuration – Tasks on Primary

- Backup primary database
- Create standby controlfile, for example,

  ```sql
  alter database create standby controlfile as 'TEST1_stdby.ctl';
  ```
- Prepare init file:
  ```
  log_archive_start = true
  log_archive_dest_1 = 'LOCATION=<arch_directory> MANDATORY
  REOPEN=30'
  log_archive_dest_state_1=enable
  log_archive_format = "log_%s_%t.arc"

  remote_archive_enable=true
  log_archive_dest_2 = 'service=<standby_tns> reopen=30'
  log_archive_dest_state_2=enable
  ```
- Add standby_tns to tnsnames.ora
- Copy primary database backup and standby controlfile to standby
- Start up listener
Data Guard Configuration – Tasks on Standby

- Set environment for standby database
 - ORACLE_SID for standby does not have to be the same as primary

- Create data file and admin directories:
 - /oradata/<db_name>
 - $ORACLE_BASE/admin/<db_name>/udump, bdump, cdump, arch

- Prepare init file:
  ```
  log_archive_start = true
  log_archive_dest_1 = 'LOCATION=<arch_directory> MANDATORY
                       REOPEN=30'
  log_archive_dest_state_1=enable
  log_archive_format = "log_%s_%t.arc"
  remote_archive_enable=true
  
  # Standby role parameters
  standby_archive_dest=<standby_arch_dir>
  standby_file_management=auto
  fal_server=<primary_tns>
  fal_client=<standby_tns>
  ```
Data Guard Configuration – Tasks on Standby

- Add TNS entries primary_tns and standby_tns to tnsnames.ora
- Restore database backup:
 - Restore database files
 - Restore archive logs
 - Copy standby controlfile to directories as specified in init file
- Startup and mount standby database:
 startup nomount
 alter database mount standby database;
- Recover managed standby database:
 alter database recover managed standby database disconnect from session;
Data Guard Configuration – Tasks on Standby

- Open database in read only mode:
 alter database recover managed standby database cancel;
 alter database open read only;

- Add temp file to locally managed temporary tablespace:
 alter tablespace temp add tempfile ‘file_name’ size <nnn> reuse;

- Switch back to managed recover mode:
 alter database recover managed standby database disconnect from session;

- Startup standby listener

- Standby is created and receiving / applying logs
Data Guard Configuration – Verify Standby

• Check log shipping:
 – Run this query on primary and standby:
    ```sql
    select sequence# from v$archived_log order by 1;
    ```
 – Do a log switch from primary, run the query again, the log should be shipped to standby automatically

• Check log apply:
 – Put standby in managed recover mode.
 – Run query to get last applied log:
    ```sql
    select SEQUENCE#, APPLIED from v$archived_log order by 1;
    ```
 – Do a log switch from primary, new archived logs should be applied.

• Check database changes are synced:
 – Make some changes on primary and do a log switch
 – Make sure last archived log is shipped and applied on standby
 – Open standby in read only, and verify the changes.
Automatic Gap Detection and Resolution

• **Automatic Gap Resolution**
 - ARCH (primary) sends log to standby
 - RFS (remote file server process on standby) receives the redo and detects gap
 - ARCH sends missing logs as requested by RFS
 - Starting 9.2.x, ARCH on primary polls standby every minute to see if any gap and sends missing logs

• **Gap Resolution by Fetch Archive Log (FAL)**
 - Managed recover process (MRP) applies log on standby.
 - If MRP finds missing or corrupted logs, it asks primary to fetch archive log (FAL).
 - Two parameters are needed for FAL to work

 fal_server=<primary_tns>
 fal_client=<standby_tns>
Automatic Gap Detection and Resolution
Redo Shipping with LGWR

• Redo data can be transmitted to standby by
 – ARCH process or
 – LGWR (log writer) – Oracle Data Guard feature. Redo log is shipped directly to standby as it is being written to local online redo log.

• Redo shipping with LGWR
 – SYNC
 • Zero data loss
 • Performance impact
 – ASYNC
 • Minimum data loss
 • Little performance impact
Redo Shipping with LGWR
Redo Shipping with LGWR

- Redo shipping with LGWR:
 - Create standby redo logs on standby. Create same number of standby redo logs as primary’s:
    ```
    alter database add standby LOGFILE
    (‘/oradata/TEST1/s_redo_01a.log’,
     ‘/oradata/TEST1/s_redo_01b.log’) ) SIZE 100M, …;
    ```
 - Configure primary parameter
    ```
    log_archive_dest_2 = 'service=<standby_tns> LGWR
    SYNC|ASYNC reopen=30'
    ```
Data Protection Modes

• Maximum protection
 – Redo transmission: LGWR SYNC
 – Zero data loss. Transaction will not commit until redo is written to standby
 – Primary will shutdown if it can not write redo to a standby
 – Impact on the performance and availability of the primary database.

• Maximum availability
 – Redo transmission: LGWR SYNC
 – Zero data loss. Transaction will not commit until redo is written to standby
 – Primary will NOT shutdown if it can not write redo to standby (Lower to maximum performance mode).
 – Impact on the performance, but not on availability of primary database
Data Protection Modes

- **Maximum performance**
 - Default mode
 - Redo transmission: LGWR ASYNC or ARCH (default)
 - Transaction will not wait to commit until redo is written to standby.
 - Minimum data loss, little impact on the performance and no impact on availability of the primary database.
 - Data loss exposure is limited by the size of the configurable ASYNC buffer

 \[
 \text{LGWR ASYNC} = \text{<buffer size>}
 \]

 Maximum buffer size: 10MB (9i), 50MB (10g)

- Set database protection mode:

 \[
 \text{ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE \{PROTECTION | AVAILABILITY | PERFORMANCE\}}
 \]
Managing Data Guard

- Startup and shutdown standby database
- Recover managed standby database
- Open in read only mode
- Create primary backup from standby
- Recover when standby data files are corrupted.
- Resolve log gaps
- Manage database files
- Switchover
- Failover
Managing Data Guard

- Manage database files
 - `standby_file_management=auto`
 - New datafiles created on the primary database are automatically created on the standby
 - Renaming datafiles in the primary database is not propagated to the standby database. Need to rename the same datafiles on the standby.
Managing Data Guard

Graceful switchover – planned maintenance, DR test

• Prepare switchover
 – Edit / verify init.ora on primary and standby to support role transition
 – Verify that there are no active users connected to either database.
 – Do a log switch on primary. Recover standby until the last archived log applied

• Convert primary database to new standby (perform this on primary)
 – alter database commit to switchover to physical standby with session shutdown;
 – Shutdown immediate
 – edit parameters in init.ora for standby role
 – startup nomount and mount new standby
Managing Data Guard

Graceful switchover

• Convert standby database to new primary (perform this on standby)
 – alter database commit to switchover to primary;
 – shutdown immediate
 – Edit parameters in init.ora for primary role
 – startup
Managing Data Guard

Failover

• Finish recovery of standby database
 LGWR log shipping:
 alter database recover managed standby database finish;
 ARCH log shipping
 alter database recover managed standby database finish skip standby logfile;

• Convert the standby database to the primary role
 alter database commit to switchover to primary;

• Shutdown immediate

• Edit init.ora for primary role

• Startup
Monitoring Data Guard

- Alert log
- V$ views
Monitoring Data Guard

- Primary and standby instances
- Primary and standby listeners
- Standby mode
 - not mounted
 - mounted
 - read only
 - managed recovery
Monitoring Data Guard

- **Redo shipping**
 - Alert log or v$dataguard_status
 - v$ managed_standby (standby) or v$archive_dest (primary)

- **Standby processes: v$managed_standby**
 - ARC0
 - MRP/MRP0
 - RFS

- **Archive log latency**
 - v$archived_log (primary, standby)

- **Archive log gap**
 - v$archived_log (primary or standby), v$archive_gap (standby)

- **Apply log latency**
 - v$log_history, v$archived_log (standby, primary)
High Availability and Disaster Recovery

Redundant Components

- Site → Production
- Network → Production
- Machine → Production
- Storage → Mirror

Contingency
High Availability

Server Cluster – Active / Inactive
• Protect from machine or instance failure
• Some down time to failover if primary fails.
• Not protect from storage failure or disasters
High Availability

Real Application Cluster

- Protect from machine or instance failure
- No down time if a cluster node or an instance fails.
- Not protect from storage failure or disasters

Instance1 (Active) <-> heart beats <-> Instance2 (Active)

Database

cache fusion
High Availability and Disaster Recovery

Replications:
- Protect from machine and storage failure or disasters
- Database changes on both sites, hot-hot configuration
- Issues with DBA maintenance cost and a small window of downtime and data loss
High Availability and Disaster Recovery

Data Guard
- Protect from machine and storage failure or disasters
- Protect data loss
- Easy to setup and maintain
- Some down time to failover if primary fails.

![Diagram showing high availability and disaster recovery with Data Guard features](image-url)
High Availability and Disaster Recovery

Data Guard
- Data Guard can be used for HA and disaster recovery
High Availability and Disaster Recovery

Maximum Availability Architecture (MAA): combined RAC and Data Guard
Summary

- Automatic gap detection and resolution
- Redo shipping with LGWR
- Data protection modes
- High availability
- Disaster recovery
- Simple management
- Efficient use of system resource
Q & A