
pr ligence Empowering Intelligence

Oracle
Fine Grained Access

Control
by

Arup Nanda

pr ligence Empowering Intelligence

• Oracle DBA for more than 10 years
• Written 50+ Articles

– Oracle Magazine, Select Journal, DBAZine.com,
SQLUpdate, Oracle Scene, TechJournal

• Presented at several conferences
– Oracle World, IOUG Live, OraTechs, AOTC,

VOUG, NYOUG
• Executive Director of Connecticut Oracle

User Group
• Editor of Select Journal – the IOUG

Publication
• Written the book Oracle Privacy Security

Auditing, from Rampant TechPress
• Awarded DBA of the Year by Oracle.

pr ligence Empowering Intelligence

Hospital Database

2DrCharlie3

2DrBarb2

1DrAdam1
GroupNameID

GreedLou35

LowVisionCraig34

FicklenessScott23

ControlBill12
EgoLarry11

DiseaseNameDoctorID
DOCTORS PATIENTS

pr ligence Empowering Intelligence

Patient Application

GreedLou35

LowVisionCraig34

FicklenessScott23
ControlBill12
EgoLarry11
DiseaseNameDoctorID

select * from patients

Dr. Adam
Doctor ID = 1

where doctor_id =
<id of the doctor logged in>

pr ligence Empowering Intelligence

Hospital Database

2DrCharlie3

2DrBarb2

1DrAdam1
GroupNameID

GreedLou35

LowVisionCraig34

FicklenessScott23

ControlBill12
EgoLarry11

DiseaseNameDoctorID
DOCTORS PATIENTS

Select * from PATIENTS

Select * from PATIENTS
Where DOCTOR_ID = 1

pr ligence Empowering Intelligence

Options

• Application Change
• Add a predicate to each SQL statement
• No security!

• Views
• Automatic predicate
• Selection on view; no access to base table
• Too many views
• Predicate has to be static
• Difficult to determine accountability

pr ligence Empowering Intelligence

A Third Option

• Automatic application of predicate
• User’s statement

SELECT * FROM PATIENTS

• Transformed to
SELECT * FROM PATIENTS

WHERE DOCTOR_ID = <ID>
• Predicate generated by a user defined policy

function.

pr ligence Empowering Intelligence

Policy

policy
Policy Function

where
doctor_id = 1

select * from patients; select * from patients
where doctor_id = 1

GreedLou35

LowVisionCraig34

FicklenessScott23

ControlBill12

EgoLarry11

DiseaseNameDoctorID Doctor ID = 1

pr ligence Empowering Intelligence

Policy Function

• Takes only two arguments
– Table Owner
– Table Name

• Must return a predicate that is to be applied, without the
word WHERE.

• The predicate must be syntactically correct
– Correct: doctor_id = (select doctor_id from doctors where

doctor_name = USER)

– Incorrect: doctor_id = (select USER from doctors)

pr ligence Empowering Intelligence

Policy Function
create or replace function get_doctor_id
(
 p_schema_name in varchar2,
 p_table_name in varchar2
)
return varchar2
is
 l_doctor_id number;
begin
 select doctor_id
 into l_doctor_id
 from doctors
 where doctor_name = USER;
 return 'doctor_id = '||l_doctor_id;
end;

returns the currently
logged in username

pr ligence Empowering Intelligence

Adding a Policy
begin
 dbms_rls.add_policy(
 object_schema => 'HOSPITAL',
 object_name => 'PATIENTS',
 policy_name => 'PATIENT_VIEW_POLICY',
 policy_function => 'GET_DOCTOR_ID',
 function_schema => 'HOSPITAL',
 statement_types =>
 'SELECT, INSERT, UPDATE, DELETE',
 update_check => true,
 enable => true
);
end;

the owner and name
of the policy function

the table on which
the policy is defined

Policy applied to all
types of statements

pr ligence Empowering Intelligence

Query Transform ation

Original Query
SELECT * FROM PATIENTS

Modified to
SELECT * FROM

(SELECT * FROM PATIENTS)

WHERE DOCTOR_ID = 1

pr ligence Empowering Intelligence

Insert/Update Check

User DRADAM allowed to see only DOCTOR_ID = 1
He tries to insert a record with DOCTOR_ID = 2
ORA-28115: policy with check option violation

He issues
update PATIENTS set DOCTOR_ID = 2;

ORA-28115: policy with check option violation, if
update_check = TRUE

pr ligence Empowering Intelligence

Bypassing
create or replace function get_doctor_id
(
 p_schema_name in varchar2,
 p_table_name in varchar2
)
return varchar2
is
 l_doctor_id number;
begin
 if (p_schema_name = USER) then
 return null;
 end if;
 select doctor_id
 into l_doctor_id
 from doctors
 where doctor_name = USER;
 return 'doctor_id = '||l_doctor_id;
end;

if (p_schema_name = USER) then
 return null;
end if;

pr ligence Empowering Intelligence

Other Bypasses

• System Privilege
• EXEMPT ACCESS POLICY
• SYS and DBA roles have this by default.

pr ligence Empowering Intelligence

Other Dependent Tables

Applied predicate
WHERE PATIENT_ID IN (SELECT PATIENT_ID

FROM PATIENTS)

pr ligence Empowering Intelligence

M ultiple Policies

• Table can have multiple policies of the same
type.

• Each policy applied with AND

PATIENTS

DOCTOR_ID = 1

PROC_CODE != ‘HIV’

TREATED = TRUE

policy1

policy2

policy3

AND

AND

select *
from patients

select *
from patients
where

pr ligence Empowering Intelligence

Extending the Functionality
Table for Authorized User
Table: USER_AUTHORITY

USERNAME - the name of the user
DOCTOR_ID – the DOCTOR_ID this user is allowed to see

Policy Function Change
select deptno into l_doctor_id
from user_authority where username = USER;
l_ret := ‘doctor_id = '||l_ doctor_id;

Table TREATMENTS (PATIENT_ID, TRATMENT_ID)
l_ret := ‘patient_id in (select patient_id from patients)';

pr ligence Empowering Intelligence

VPD and Other Oracle Tools
VPD is applied in Conventional Modes only.
Export DIRECT=Y

EXP-00079: Data in table “PATIENTS" is protected.
Conventional path may only be exporting partial
table.

. . exporting table PATIENTS 3
rows exported

SQL*Loader DIRECT=Y
SQL*Loader-951: Error calling once/load

initialization
ORA-00604: error occurred at recursive SQL level

1
ORA-28113: policy predicate has error

Direct Mode Load
insert /*+ APPEND */ into EMP;
ERROR at line 1:
ORA-28115: policy with check option violation

pr ligence Empowering Intelligence

M anaging Policies

• View DBA_POLICIES
• Oracle Policy Manager

– oemapp opm
• Applied Policies

– V$VPD_POLICY

pr ligence Empowering Intelligence

Refreshing a Policy
dbms_rls.refresh_policy (
 object_schema => 'HOSPITAL'
 object_name => 'PATIENTS',
 policy_name => 'PATIENT_VIEW_POLICY'
);

Required when the parsed copy of the policy function
needs to be changed.

Refreshing guarantees that. Recommended every time the
policy or function is changed

Not required in 9i

pr ligence Empowering Intelligence

Dropping a Policy
dbms_rls.drop_policy (
 object_schema =>'HOSPITAL'
 object_name =>'PATIENTS',
 policy_name =>'PATIENT_VIEW_POLICY'
);

When the policy is not required anymore or the
table should not be subjected to the restrictions.

pr ligence Empowering Intelligence

Enabling/Disabling a Policy
dbms_rls.enable_policy (
 object_schema => 'HOSPITAL'
 object_name => 'PATIENTS',
 policy_name => 'PATIENT_VIEW_POLICY',
 enable => TRUE
);

When enabling a policy, just change parameter
enable to TRUE and execute this function.

pr ligence Empowering Intelligence

Troubleshooting
• Most errors produce trace files
• Debugging

alter session set events
'10730 trace name context forever, level 12‘;
Will produce the rewritten query in a trace file

• ORA-28110: Policy function or package has error
Recompile the package

• ORA-28112: failed to execute policy function
Some unhandled exception; check the trace file

• ORA-28116: insufficient privileges to do direct path access
Conventional or Exempt User

• ORA-28113: policy predicate has error
Check the trace file – SYNTAX Problem

pr ligence Empowering Intelligence

Application Users

User: DrAdam

User: DrCharlie

Application
Server

User:
APPUSER

pr ligence Empowering Intelligence

Client Identifier

• Introduced in Oracle 9i
• dbms_session.set_identifier('<identifier>')
• CLIENT_ID in V$SESSION
• CLIENT_ID in Auditing
• sys_context('USERENV','CLIENT_IDENTIFIER')

pr ligence Empowering Intelligence

Application Context

Select USER from dual;
Select SYS_CONTEXT (‘USERENV’,

‘CURRENT_USER’) from dual;

APP_CTX

ATTR1

ATTR2

set_app_ctxset_app_ctx

pr ligence Empowering Intelligence

Oracle 10g Enhancem ents

Relevant Columns
SELECT COUNT(*) FROM PATIENTS
SELECT PATIENT_ID FROM PATIENTS
SELECT SOCIAL_SEC_NO FROM PATIENTS

Another parameter
dbms_rls.add_policy (
…
sec_relevant_cols => 'PATIENT_ID'

pr ligence Empowering Intelligence

Policy Types

• dynamic
• context_sensitive
• shared_context_sensitive
• static
• shared_static

pr ligence Empowering Intelligence

Conclusion

• Different view – on user
• Predicate applied automatically
• Predicate user generated
• 10g enhancements

pr ligence Empowering Intelligence

Thank You!
Questions?

arup@proligence.com

