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• Oracle DBA for more than 10 years
• Written 50+ Articles

– Oracle Magazine, Select Journal, DBAZine.com,
SQLUpdate, Oracle Scene, TechJournal

• Presented at several conferences
– Oracle World, IOUG Live, OraTechs, AOTC,

VOUG, NYOUG
• Executive Director of Connecticut Oracle

User Group
• Editor of Select Journal – the IOUG

Publication
• Written the book Oracle Privacy Security

Auditing, from Rampant TechPress
• Awarded DBA of the Year by Oracle.
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1DrAdam1
GroupNameID

GreedLou35

LowVisionCraig34

FicklenessScott23

ControlBill12
EgoLarry11

DiseaseNameDoctorID
DOCTORS PATIENTS
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Patient Application

GreedLou35

LowVisionCraig34

FicklenessScott23
ControlBill12
EgoLarry11
DiseaseNameDoctorID

select * from patients

Dr. Adam
Doctor ID = 1

where doctor_id =
<id of the doctor logged in>
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Hospital Database

2DrCharlie3

2DrBarb2

1DrAdam1
GroupNameID

GreedLou35

LowVisionCraig34

FicklenessScott23

ControlBill12
EgoLarry11

DiseaseNameDoctorID
DOCTORS PATIENTS

Select * from PATIENTS

Select * from PATIENTS
Where DOCTOR_ID = 1
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Options

• Application Change
• Add a predicate to each SQL statement
• No security!

• Views
• Automatic predicate
• Selection on view; no access to base table
• Too many views
• Predicate has to be static
• Difficult to determine accountability
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A Third Option

• Automatic application of predicate
• User’s statement

SELECT * FROM PATIENTS

• Transformed to
SELECT * FROM PATIENTS

WHERE DOCTOR_ID = <ID>
• Predicate generated by a user defined policy

function.
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Policy

policy
Policy Function

where 
doctor_id = 1

select * from patients; select * from patients
where doctor_id = 1

GreedLou35

LowVisionCraig34

FicklenessScott23

ControlBill12

EgoLarry11

DiseaseNameDoctorID Doctor ID = 1
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Policy Function

• Takes only two arguments
– Table Owner
– Table Name

• Must return a predicate that is to be applied, without the
word WHERE.

• The predicate must be syntactically correct
– Correct: doctor_id = (select doctor_id from doctors where

doctor_name = USER)

– Incorrect: doctor_id = (select USER from doctors)
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Policy Function
create or replace function get_doctor_id
(
   p_schema_name   in   varchar2,
   p_table_name   in   varchar2
)
return varchar2
is
   l_doctor_id   number;
begin
   select doctor_id
   into l_doctor_id
   from doctors
   where doctor_name = USER;
   return 'doctor_id = '||l_doctor_id;
end;

returns the currently
logged in username
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Adding a Policy
begin
 dbms_rls.add_policy(
  object_schema   => 'HOSPITAL',
  object_name     => 'PATIENTS',
  policy_name     => 'PATIENT_VIEW_POLICY',
  policy_function => 'GET_DOCTOR_ID',
  function_schema => 'HOSPITAL',
  statement_types =>
          'SELECT, INSERT, UPDATE, DELETE',
  update_check    => true,
  enable          => true
   );
end;

the owner and name
of the policy function

the table on which
the policy is defined

Policy applied to all
types of statements
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Query Transform ation

Original Query
SELECT * FROM PATIENTS

Modified to
SELECT * FROM

(SELECT * FROM PATIENTS)

WHERE DOCTOR_ID = 1
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Insert/Update Check

User DRADAM allowed to see only DOCTOR_ID = 1
He tries to insert a record with DOCTOR_ID = 2
ORA-28115: policy with check option violation

He issues
update PATIENTS set DOCTOR_ID = 2;

ORA-28115: policy with check option violation, if
update_check = TRUE
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Bypassing
create or replace function get_doctor_id
(
   p_schema_name   in   varchar2,
   p_table_name   in   varchar2
)
return varchar2
is
   l_doctor_id   number;
begin
   if (p_schema_name = USER) then
      return null;
   end if;
   select doctor_id
   into l_doctor_id
   from doctors
   where doctor_name = USER;
   return 'doctor_id = '||l_doctor_id;
end;

if (p_schema_name = USER) then 
      return null;
end if;
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Other Bypasses

• System Privilege
• EXEMPT ACCESS POLICY
• SYS and DBA roles have this by default.
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Other Dependent Tables

Applied predicate
WHERE PATIENT_ID IN (SELECT PATIENT_ID

FROM PATIENTS)
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M ultiple Policies

• Table can have multiple policies of the same
type.

• Each policy applied with AND

PATIENTS

DOCTOR_ID = 1

PROC_CODE != ‘HIV’

TREATED = TRUE

policy1

policy2

policy3

AND

AND

select *
from patients

select *
from patients
where
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Extending the Functionality
Table for Authorized User
Table: USER_AUTHORITY

USERNAME  - the name of the user
DOCTOR_ID – the DOCTOR_ID this user is allowed to see

Policy Function Change
select deptno into l_doctor_id
from user_authority where username = USER;
l_ret := ‘doctor_id = '||l_ doctor_id;

Table TREATMENTS (PATIENT_ID, TRATMENT_ID)
l_ret := ‘patient_id in (select patient_id from patients)';
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VPD and Other Oracle Tools
VPD is applied in Conventional Modes only.
Export DIRECT=Y

EXP-00079: Data in table “PATIENTS" is protected.
Conventional path may only be exporting partial
table.

. . exporting table          PATIENTS          3
rows exported

SQL*Loader DIRECT=Y
SQL*Loader-951: Error calling once/load

initialization
ORA-00604: error occurred at recursive SQL level

1
ORA-28113: policy predicate has error

Direct Mode Load
insert /*+ APPEND */ into EMP;
ERROR at line 1:
ORA-28115: policy with check option violation
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M anaging Policies

• View DBA_POLICIES
• Oracle Policy Manager

– oemapp opm
• Applied Policies

– V$VPD_POLICY
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Refreshing a Policy
dbms_rls.refresh_policy (
 object_schema => 'HOSPITAL'
 object_name   => 'PATIENTS',
 policy_name   => 'PATIENT_VIEW_POLICY'
);

Required when the parsed copy of the policy function
needs to be changed.

Refreshing guarantees that. Recommended every time the
policy or function is changed

Not required in 9i
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Dropping a Policy
dbms_rls.drop_policy (
 object_schema =>'HOSPITAL'
 object_name   =>'PATIENTS',
 policy_name   =>'PATIENT_VIEW_POLICY'
);

When the policy is not required anymore or the
table should not be subjected to the restrictions.
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Enabling/Disabling a Policy
dbms_rls.enable_policy (
 object_schema => 'HOSPITAL'
 object_name   => 'PATIENTS',
 policy_name   => 'PATIENT_VIEW_POLICY',
 enable        => TRUE
);

When enabling a policy, just change parameter
enable to TRUE and execute this function.
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Troubleshooting
• Most errors produce trace files
• Debugging

alter session set events
'10730 trace name context forever, level 12‘;
Will produce the rewritten query in a trace file

• ORA-28110: Policy function or package has error
Recompile the package

• ORA-28112: failed to execute policy function
Some unhandled exception; check the trace file

• ORA-28116: insufficient privileges to do direct path access
Conventional or Exempt User

• ORA-28113: policy predicate has error
Check the trace file – SYNTAX Problem
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Application Users

User: DrAdam

User: DrCharlie

Application
Server

User:
APPUSER
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Client Identifier

• Introduced in Oracle 9i
• dbms_session.set_identifier('<identifier>')
• CLIENT_ID in V$SESSION
• CLIENT_ID in Auditing
• sys_context('USERENV','CLIENT_IDENTIFIER')
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Application Context

Select USER from dual;
Select SYS_CONTEXT (‘USERENV’,

‘CURRENT_USER’) from dual;

APP_CTX

ATTR1

ATTR2

set_app_ctxset_app_ctx



pr ligence Empowering Intelligence

Oracle 10g Enhancem ents

Relevant Columns
SELECT COUNT(*) FROM PATIENTS
SELECT PATIENT_ID FROM PATIENTS
SELECT SOCIAL_SEC_NO FROM PATIENTS

Another parameter
dbms_rls.add_policy (
…
sec_relevant_cols => 'PATIENT_ID'
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Policy Types

• dynamic
• context_sensitive
• shared_context_sensitive
• static
• shared_static
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Conclusion

• Different view – on user
• Predicate applied automatically
• Predicate user generated
• 10g enhancements
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Thank You!
Questions?

arup@proligence.com


