
Object Types vs. PL/SQL Types:
A Practical Example

Dr. Paul Dorsey
Dulcian, Inc.

www.dulcian.com

Evolution of SQL and PL/SQL

Since release of the Oracle8
database, there have been
new additions to SQL and
PL/SQL.

Many developers are unaware
of these.
Many developers who are
aware of the additions may not
be sure how to use them.

This presentation will show a
specific example of how new
SQL and PL/SQL features
were used to solve a specific
real-world problem.

Part 1.
The Problem

Data Source
A seemingly simple report was needed based on
a small number of warehouse tables.
Simplified data model

REGION

DEPT

SALESPERSON

CUSTOMER

1

1 1

1

*

*

*

*

1

*

System description

Customers are entered into the system.
They move through different milestones.

Prospects > Leads > Actual Customers
Real system included 10 different milestones.

Need to track when each milestone is reached.

Other customer attributes required tracking
(DOB, height, weight).

Reporting Front-End
Flexible reporting front-end needed.
Users can specify any number of filters.

Example: “Customers over 40 years of age from California reaching the
Lead milestone.”

Report Display options
Example: Region

Department
Salesperson

Report detail at Salesperson level
Breaks at Department and Region levels
Actual report had 6 levels.

Report details

Users can specify:
Desired level of report detail
Location of breaks
Report columns

Used to group customers reaching a particular milestone
Up to 10 different columns needed for the report

Up to 20 statistics to appear within each cell
Ex. average number of phone calls, average age, customer count, etc.

Reporting Requirements

Generic filtering
2-3 filter criteria

On-the-fly structural specification
3-5 levels of breaks (200-400 rows in the report)

On-the-fly column specification
5 or more columns

On-the-fly reporting statistic specification
4 or more statistic

Number of Customers ~ 5-10 million range

Attempted Solution 1

Set up a dynamic matrix report using Oracle Reports.
Smart functions in each cell to calculate statistics

Does not work because:
Each statistic requires overall filter criteria for the report.
For this report - 200 rows x 5 columns x 4 statistics = 4000
independent queries
Performance would be unacceptable.

Attempted Solution 2

Global temporary tables used
Good for building single use session-specific temporary
tables.
CREATE TABLE command used with tables flagged as
global temporary tables

Actually used on a project to create a report with only
7 pre-defined rows
To speed performance somewhat:

Report level and raw level filters applied first to populate 7
independent global temporary tables
Approach not scalable for complex report since 400 global
temporary tables would be needed and up to 1500 queries.

Part 2.
The solution that worked

Specifications

Simplify report structure
Move report logic out of reporting tools into procedural
code
Create a complete image of final report

Including breaks and break values

Need an entirely different architecture to leverage new
SQL and PL/SQL additions

Required results
ID Number,

ID_RFK Number,
Region_OID number,
Dept_OID number,
CustmrCount_NR

number,
Break1_TX

Varchar2(200),
…
Break10_TX

Varchar2(200),
Col1_TX

Varchar2(200),
…
Col10_TX

Varchar2(200),
Level_NR Number,
Order_NR Number,
Populated_YN

varchar2(1)

Items in this code are identified as
follows:
ID = System-generated ID
RFK = Recursive foreign key link
to track what rows roll up to what
other rows
Breaks 1-10 = Descriptive row text
Columns 1-10 = CHR(10)
delimited list of statistics values for
the report
Level = Row level in recursive
hierarchy
Order = Number of the row in the
report
Populated_YN = Used in
processing for first detail then
aggregated upward to build the
report

Logical structure
Object
type

Object
type

Object
collection

type

Object
collection

type

Package

ReportTable ReportTableTType:=
ReportTabletType();

Function GetReportTable
return ReportTableTType;

Instance

Returns
References

View

Data

Cast
as table

Structure

Report

Step 1: Object type

Report created as an object collection
Necessary to create an object type first

CREATE OR REPLACE
type reporttableotype
as object

(ID Number,
ID_RFK Number, …)

Step 2: Object collection

Object collection type must be built based on created object type:

CREATE OR REPLACE
type reporttablettype
as table of ReportTableOType;

IMPORTANT: Once an object collection type has been created –
cannot modify object type.

To modify
drop object collection type (invalidates dependent PL/SQL code!)
modify structural object type
recreate object collection type
recompile invalidated dependants

Step 3: Instantiated variable

The “report table” is an instantiated package variable of
type ReportTableType created using the following
code:

ReportTable ReportTableTType:=
ReportTableTType();

Definition of variable is placed in the package
specification to make it accessible
to other PL/SQL code

Step 4: GET-function

Once the report “table” is populated, a function is
created in the package to return the object collection
and create the appropriate view.

FUNCTION GetReportTable
RETURN ReportTableTType IS

BEGIN
RETURN ReportTable;

END GetReportTable;

Step 5: View

Code to create view:

CREATE OR REPLACE VIEW v_reporttable (
id, id_rfk, …)

AS
select r.*
from table(

cast (OrgUnitReprt.GetReportTable()
as ReportTableTType)

) r

Activities: Cleaning the report table

Use DELETE method:
Object collection is a packaged variable – session-level
resource.
It has to be cleaned BEFORE report data is collected.

ReportTable.delete;

Activities: Inserting into Report
table

Use the EXTEND command to create a new row
(similar to an INSERT statement)

ReportTable.extend;
ReportTable(ReportTable.last):=

ReportTableOType(V_ID,
V_ID_RFK,
…)

When this is complete, it is possible to use SELECT *
from view (v_reporttable) to see coding results

Limitations and Cautions

CONNECT_BY commands do not work from these
tables.
Casting an object collection to a table in a loop
requires a lot of time. (1/100th of a second).

Not good for processing 1million customers

Looping should be done without casting.

Architectural features

Report architecture is quite robust.
Object collections can be treated like normal tables.
Cursors loop through collections faster than a
PL/SQL table
Deploying the report table through the view is very
useful.

Easy maintenance - changes of the algorithm
are made in the package only
Portability - view can be used
by any reporting utility

Part 3.
Implementation

Step 1: Prepare statistics

Single query used to walk through all customers
and update appropriate statistics based on values
associated with the customer.
Individual statistics placed into a PL/SQL table
using a simple hash function to concatenate the
row, column, statistic number.
Allowed easy insert and retrieval of statistic
values.

Step 2: Collect statistics

Copy information from detail rows of report
table to break columns in report
Uses only information stored in report table and
statistics.
For complex statistics (e.g. truncated averages),
RANK function used to calculate statistic in
each cell where required.
Code available on Dulcian (www.dulcian.com)
and NYOUG (www.nyoug.org) websites.

Results (1)

Report runs very quickly
Initial setup + report table population = .2-.3 seconds
Copying statistics to report + calculation of
aggregate rollups = .1-.2 seconds
Approximately 10,000 customers/second can be
processed depending upon machine power

Solution works as long as the number of
customers processed in any report is in the tens
of thousands.

Results (2)

Report’s modular structure allows for easy
modifications if needed.
Performance varies little regardless of the
number of statistics selected.
Code can be reused among reports to speed
creation of additional reports.
3 reports constructed this way support all
managerial reporting requirements of a large
government system.

Share your Knowledge:
Call for Articles for the

SELECT Journal
Help contribute your knowledge to the larger Oracle
community:

Make the SELECT Journal an even more valuable resource.
Articles wanted on topics of interest to the Oracle community.
Sign up to be a reviewer of articles.

Submit articles, questions, … to select@ioug.org.

Contact Information

Dr. Paul Dorsey – paul_dorsey@dulcian.com
Dulcian website - www.dulcian.com

Design Using UML
Object Modeling
Design Using UML
Object Modeling

Developer Advanced
Forms & Reports
Developer Advanced
Forms & Reports Designer

Handbook
Designer
Handbook

	Object Types vs. PL/SQL Types: A Practical Example
	Evolution of SQL and PL/SQL
	Part 1. The Problem
	Data Source
	System description
	Reporting Front-End
	Report details
	Reporting Requirements
	Attempted Solution 1
	Attempted Solution 2
	Part 2. The solution that worked
	Specifications
	Required results
	Logical structure
	Step 1: Object type
	Step 2: Object collection
	Step 3: Instantiated variable
	Step 4: GET-function
	Step 5: View
	Activities: Cleaning the report table
	Activities: Inserting into Report table
	Limitations and Cautions
	Architectural features
	Part 3.Implementation
	Step 1: Prepare statistics
	Step 2: Collect statistics
	Results (1)
	Results (2)
	Share your Knowledge:Call for Articles for the SELECT Journal
	Contact Information

