a5

Object Types vs. PL/SQL Types:
A Practical Example

Dr. Paul Dorsey
Dulcian, Inc.
www.dulcian.com

/f-;-DULCIAN,- |
e Evolution of SQL and PL/SQL

¢ Since release of the Oracle8
database, there have been
new additions to SQL and
PL/SQL.

» Many developers are unaware
of these.

» Many developers who are
aware of the additions may not
be sure how to use them.

¢ This presentation will show a
specific example of how new
SQL and PL/SQL features
were used to solve a specific
real-world problem.

Part 1.
The Problem

@

®

Data Source

¢ A seemingly simple report was needed based on
a small number of warehouse tables.

¢ Simplified data model

SALESPERSON

CUSTOMER 4

L System description

¢ Customers are entered Into the system.

¢ They move through different milestones.

> Prospects > Leads > Actual Customers
= Real system included 10 different milestones.

> Need to track when each milestone Is reached.

¢ Other customer attributes required tracking
(DOB, height, weight).

=P ' | Reporting Front-End

¢ Flexible reporting front-end needed.

¢ Users can specify any number of filters.

» Example: “Customers over 40 years of age from California reaching the
Lead milestone.”

¢ Report Display options
» Example: Region
Department
Salesperson
¢ Report detail at Salesperson level

> Breaks at Department and Region levels
» Actual report had 6 levels.

a=p. Report details

¢ Users can specify:
» Desired level of report detail
> Location of breaks

» Report columns
= Used to group customers reaching a particular milestone
= Up to 10 different columns needed for the report

» Up to 20 statistics to appear within each cell
= EX. average number of phone calls, average age, customer count, etc.

a=p. = Reporting Requirements

¢ Generic filtering
> 2-3 filter criteria

¢ On-the-fly structural specification
> 3-5 levels of breaks (200-400 rows In the report)
¢ On-the-fly column specification
» 5 or more columns
¢ On-the-fly reporting statistic specification
> 4 or more statistic
¢ Number of Customers ~ 5-10 million range

?ll//

N/

-ﬂ

el | Attempted Solution 1

< Set up a dynamic matrix report using Oracle Reports.
> Smart functions in each cell to calculate statistics

¢ Does not work because:
» Each statistic requires overall filter criteria for the report.

» For this report - 200 rows x 5 columns x 4 statistics = 4000
Independent queries

> Performance would be unacceptable. -
_r - ?
_ L
B

-ﬂ

ol Attempted Solution 2

¢ Global temporary tables used

» Good for building single use session-specific temporary
tables.

» CREATE TABLE command used with tables flagged as
global temporary tables
¢ Actually used on a project to create a report with only
[pre-defined rows

¢ To speed performance somewhat:

» Report level and raw level filters applied first to populate 7
Independent global temporary tables

» Approach not scalable for complex report since 400 global
temporary tables would be needed and up to 1500 queries.

Part 2.
The solution that worked

b

L)

-ﬂ

=P | Specifications

¢ Simplify report structure

¢ Move report logic out of reporting tools into procedural
code

¢ Create a complete image of final report
» Including breaks and break values

¢ Need an entirely different architecture to leverage new
SQL and PL/SQL additions

) <{ Required results
ID Number, Items in this code are identified as

ID RFK Number,
Region_OID number,
Dept _OID number,

CustmrCount NR
number,

Breakl TX
Varchar2(200),

Breakl0 TX
Varchar2(200),

Coll TX
Varchar2(200),

Coll0 TX
Varchar2(200),

Level NR Number,
Order NR Number,

Populated YN
varchar2(l)

4
4

follows:
ID = System-generated 1D

RFK = Recursive foreign key link
to track what rows roll up to what
other rows

Breaks 1-10 = Descriptive row text

Columns 1-10 = CHR(10)
delimited list of statistics values for
the report

Level = Row level in recursive
hierarchy

Order = Number of the row in the
report

Populated YN = Used in
processing for first detail then
aggregated upward to build the
report

Logical structure

Package
M} ReportTable ReportTableT Type:=

Object

ReportTabletType();
type References

collection

< g Function GetReportTable
return ReportTableTType;

Cast
as table

Step 1: Object type

¢ Report created as an object collection
¢ Necessary to create an object type first

CREATE OR REPLACE
type reporttableotype
as object
(1D Number,
ID RFK Number, ..)

-ﬂ

4= Step 2: Object collection

¢ Object collection type must be built based on created object type:

CREATE OR REPLACE
type reporttablettype
as table of ReportTableOType;

¢ IMPORTANT: Once an object collection type has been created —
cannot modify object type.
» To modify
= drop object collection type (invalidates dependent PL/SQL code!)
= modify structural object type
= recreate object collection type
= recompile invalidated dependants

-ﬂ

4=P. | Step 3: Instantiated variable

¢ The “report table” is an instantiated package variable of
type ReportTableType created using the following
code:

ReportTable ReportTableTType:=
ReportTableTType();

< Definition of variable is placed in the package

specification to make it accessible
to other PL/SQL code ’(.ZL\J‘
W

- il

a=p. Step 4: GET-function

¢ Once the report “table” Is populated, a function is
created in the package to return the object collection
and create the appropriate view.

FUNCTION GetReportTable
RETURN ReportTableTType IS

BEGIN
RETURN ReportTable;
END GetReportTable; Ml !'L«
U UL

Step 5: View

¢ Code to create view:

CREATE OR REPLACE VIEW v_reporttable (
id, 1d _rfk, ..)
AS
select r.*
from table(
cast (OrgunitReprt.GetReportTable()
as ReportTableTType)

) r

Activities: Cleaning the report table

¢ Use DELETE method:

» Object collection is a packaged variable — session-level
resource.

» It has to be cleaned BEFORE report data Is collected.

ReportTable.delete;

Activities: Inserting into Report
table

¢ Use the EXTEND command to create a new row
(similar to an INSERT statement)

ReportTable.extend;
ReportTable(ReportTable.last):=
ReportTableOType(V_ 1D,
V_ID_RFK,
)

¢ When this Is complete, It is possible to use SELECT *
from view (v_reporttable) to see coding results

o

:

Zald ' | Limitations and Cautions

¢ CONNECT_BY commands do not work from these
tables.

¢ Casting an object collection to a table in a loop
requires a lot of time. (1/100t of a second).

» Not good for processing 1million customers
¢ Looping should be done without casting.

A

AP Architectural features

¢ Report architecture is quite robust.
¢ Object collections can be treated like normal tables.

¢ Cursors loop through collections faster than a
PL/SQL table

¢ Deploying the report table through the view is very
useful.

» Easy maintenance - changes of the algorithm
are made in the package only

» Portability - view can be used
by any reporting utility

Part 3.
Implementation

-

Step 1: Prepare statistics

¢ Single query used to walk through all customers
and update appropriate statistics based on values
assoclated with the customer.

¢ Individual statistics placed into a PL/SQL table
using a simple hash function to concatenate the
row, column, statistic number.

¢ Allowed easy Insert and retrieval of statistic
values.

Step 2: Collect statistics

¢ Copy information from detail rows of report
table to break columns In report

¢ Uses only information stored In report table and
statistics.

¢ For complex statistics (e.g. truncated averages),
RANK function used to calculate statistic in
each cell where required.

¢ Code available on Dulcian (www.dulcian.com)
and NYOUG (www.nyoug.org) websites.

Results (1)

¢ Report runs very quickly
> Initial setup + report table population = .2-.3 seconds

» Copying statistics to report + calculation of
aggregate rollups = .1-.2 seconds

» Approximately 10,000 customers/second can be
processed depending upon machine power
¢ Solution works as long as the number of
customers processed In any report is in the tens
of thousands.

Results (2)

¢ Report’s modular structure allows for easy
modifications If needed.

¢ Performance varies little regardless of the
number of statistics selected.

¢ Code can be reused among reports to speed
creation of additional reports.

¢ 3 reports constructed this way support all
managerial reporting requirements of a large
government system.

Ay ULLIAN: Share your Knowledge:
Call for Articles for the
SELECT Journal
¢ Help contribute your knowledge to the larger Oracle
community:

» Make the SELECT Journal an even more valuable resource.
> Articles wanted on topics of interest to the Oracle community.
» Sign up to be a reviewer of articles.

¢ Submit articles, questions, ... to select@ioug.org.

International Oracle Users Group

A5 DULCIAN: Contact Information

¢ Dr. Paul Dorsey — paul_dorsey@dulcian.com
¢ Dulcian website - www.dulcian.com

¢
&

Developer Advanced Design Using UML
Designer

Handbook

ORACLE9/ FOpIE S Hengrp Object Modeling

J DE‘-‘EI&PH r
Handbook

sy
e e

s ams g —
—— B, P TR

	Object Types vs. PL/SQL Types: A Practical Example
	Evolution of SQL and PL/SQL
	Part 1. The Problem
	Data Source
	System description
	Reporting Front-End
	Report details
	Reporting Requirements
	Attempted Solution 1
	Attempted Solution 2
	Part 2. The solution that worked
	Specifications
	Required results
	Logical structure
	Step 1: Object type
	Step 2: Object collection
	Step 3: Instantiated variable
	Step 4: GET-function
	Step 5: View
	Activities: Cleaning the report table
	Activities: Inserting into Report table
	Limitations and Cautions
	Architectural features
	Part 3.Implementation
	Step 1: Prepare statistics
	Step 2: Collect statistics
	Results (1)
	Results (2)
	Share your Knowledge:Call for Articles for the SELECT Journal
	Contact Information

