
Oracle9i New Features for DevelopersOracle9i New Features for Developers 0.10.1

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.
SKILLBUILDERS

Oracle9i New Features Oracle9i New Features
for Developersfor Developers

Presented at NYOUG
March 13, 2003
Dave Anderson

Dave@skillbuilders.com

Oracle9i New Features for DevelopersOracle9i New Features for Developers 0.20.2

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

0.20.2

GoalGoal
A brief introduction to 9i features and
enhancements impacting developers
Will be moving fast – lots to cover
See some examples
Grasp understanding of purpose of feature or
enhancement

Oracle9i New Features for DevelopersOracle9i New Features for Developers 0.30.3

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

0.30.3

TopicsTopics
Deprecated Features
Flashback Query
External Tables
SQL Features
PL/SQL Features

New Datatypes
Resumable Space
Mgmt
Tuning Enhancements
Security
Index Enhancements

Deprecated & Desupported FeaturesDeprecated & Desupported Features 1.1.11

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.
SKILLBUILDERS

1. Deprecated Features 1. Deprecated Features
for Developersfor Developers

A brief look at what deprecated
features will impact developers.

Deprecated & Desupported FeaturesDeprecated & Desupported Features 1.1.22

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

1.1.22

9i Releases9i Releases
Release 1

9.0.1.x
Release 2

9.2.0.x.x

VersionVersion New New
FeaturesFeatures MaintenanceMaintenance

Generic Generic
PatchsetsPatchsets

Platform Platform
specific specific

PatchsetsPatchsets

Deprecated & Desupported FeaturesDeprecated & Desupported Features 1.1.33

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

1.1.33

Deprecated FeaturesDeprecated Features
Deprecated

Still supported but not recommended for use
Planned for desupport in a future release

ANALYZE command to collect statistics
Export / Import INCREMENTAL functionality
LONG, LONG RAW data types
Let’s look at each in turn…

Deprecated – Still supported but not recommended for use. If a feature has been
listed as deprecated you should begin to plan for its desupport in a future release.
This gives you time to plan for this upcoming change. You should have some idea
of it’s impact.

Desupported – No longer supported in a release. These features just will not work.
In some cases there is an alternative way to accomplish this feature, in other cases,
this type of feature is just no longer available within this product.

These developer-related features are deprecated in Oracle9i:
Export / Import INCREMENTAL functionality
LONG, LONG RAW data types
ANALYZE command to collect statistics

There are also some DBA-related features that have been deprecated:
Some init.ora parameters
bstat / estat scripts (replaced by STATSPACK)

Deprecated & Desupported FeaturesDeprecated & Desupported Features 1.1.44

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

1.1.44

LONG, LONG RAWLONG, LONG RAW
Data TypesData Types

Deprecated
LONG – Variable length character datatype

Use CLOB instead
LONG RAW – Variable length raw (binary)

Use BLOB or BFILE instead

R2 enhanced support for LOBs
All SQL functions supported
Comparison = < > supported
No code changes necessary to implement LOBs

The LONG and LONG RAW datatypes are provided for backward compatibility and
have been deprecated.

LOB datatypes such as CLOB, BLOB, and BFILE should be used instead of LONG
and LONG RAW.

Deprecated & Desupported FeaturesDeprecated & Desupported Features 1.1.55

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

1.1.55

ANALYZEANALYZE CommandCommand
Deprecated, use DBMS_STATS package instead

More flexible - several procedures available
GATHER_INDEX_STATS, GATHER_TABLE_STATS
GATHER_SCHEMA_STATS, GATHER_DATABASE_STATS

SQL> begin
2 dbms_stats.gather_table_stats(user ,'employee',
3 cascade=>TRUE,
4 method_opt=> 'FOR ALL INDEXED COLUMNS');
5 end;
6 /

PL/SQL procedure successfully completed.

SQL> begin
2 dbms_stats.gather_table_stats(user ,'employee',
3 cascade=>TRUE,
4 method_opt=> 'FOR ALL INDEXED COLUMNS');
5 end;
6 /

PL/SQL procedure successfully completed.

The use of the ANALYZE command to gather statistics has been deprecated and
may be desupported in future releases.

DBMS_STATS is more flexible in that there are several procedures that providing
different target scope, I.e. you can collect statistics on an individual object (table or
index), all objects within a schema or even the entire database.

In this example I use the GATHER_TABLE_STATS procedure to collect statistics for
my EMPLOYEE table and all dependent indexes. Unlike the ANALYZE command
(deprecated), the default is not to collect stats on dependent indexes, so you must
use CASCADE =>TRUE parameter.

The METHOD_OPT parameter controls the creation of histograms. (See the section
on histograms later in this module.) Histograms are expensive, so only create them
on indexed columns.

Warning: The default is to create histograms on every column. This is rarely
useful and very expensive. Use the method_opt=> 'FOR ALL INDEXED
COLUMNS' clause or variant, which will create histograms only for some columns.

Deprecated & Desupported FeaturesDeprecated & Desupported Features 1.1.66

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

1.1.66

ANALYZEANALYZE Command (cont)Command (cont)
DBMS_STATS advantages

Can be parallelized for better performance
See DEGREE argument

Provides more accurate stats for partitioned
objects
Backup stats in user tables
Prevent cursor invalidation with NO_INVALIDATE
Fabricate stats with SET to see effect
Export table stats, import into TEMP table

Can’t gather for TEMP tables

The DBMS_STATS package should be used instead of the ANALYZE command to
gather statistics. DBMS_STATS can be run in parallel, providing better performance.
Also, Oracle documentation says that DBMS_STATS provides “more accurate”
statistics than ANALYZE for partitioned objects.

Deprecated & Desupported FeaturesDeprecated & Desupported Features 1.1.77

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

1.1.77

Export / Import Export / Import INCREMENTALINCREMENTAL
FunctionalityFunctionality

Exports an entire table if any row in the table
has changed since the last incremental
export

Use RMAN incremental backups instead

The INCREMENTAL functionality of the export / import utility has been deprecated.

Tables are still be able to be exported.

Instead, use RMAN incremental backups to back up your data. Remember, if you
want to isolate a table for backup, you can always place a table in it’s own
tablespace.

Deprecated & Desupported FeaturesDeprecated & Desupported Features 1.1.88

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

1.1.88

SummarySummary
Deprecated Features
ANALYZE command
Export / Import INCREMENTAL functionality
LONG, LONG RAW data types

Also note: Desupported Features
Server Manager
CONNECT INTERNAL
Various init.ora parameters
Changes to data dictionary

E.g. no more DBA_SNAPSHOT_LOGS

Be aware of what is coming up in future releases of Oracle. Prior to new releases
many commands, parameters, views, utilities, and datatypes may have been
deprecated, which means they are still supported but may become desupported or
obsolete in a future release.

Flashback QueryFlashback Query 2.2.11

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.
SKILLBUILDERS

2. Flashback Query2. Flashback Query
Concepts

Use
Tips

Limitations

Flashback QueryFlashback Query 2.2.22

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

2.2.22

ConceptsConcepts
Execute SELECT as if it was being run in the past

Database restore not necessary
“Self-service error correction”

Window depends on UNDO_RETENTION parameter
DBA sets in INIT.ORA or SPFILE
For example, retain 12 hours of UNDO

undo_retention = 43200

Should use 9i automatic UNDO management
undo_management = AUTO

Flashback Queries are a new type of query that allows one to get the results of a
query as if one was running it in the past (a previous point in time). Up to now one
would need a database restore to accomplish the same. With Flashback Queries
one can achieve this without involving the DBA.

This feature is particularly valuable if one accidentally deletes rows from a table.
Using Flashback one can easily recover the deleted rows and (perhaps) save them
to a temporary file/table. This is where the Oracle marketing phrase “self-service
error correction” came from.

How far back into the past one can go is dependent on the value of the parameter
UNDO_RETENTION. This is usually specified by the DBA in INIT.ORA or SPFILE.
Note that the database should be configured to use ‘Automatic Undo Management’
rather than traditional rollback segments so that the retention window can be
specified (undo_retention parameter).

Flashback QueryFlashback Query 2.2.33

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

2.2.33

DBMS_FLASHBACKDBMS_FLASHBACK
DBMS_FLASHBACK package manages flashback
mode
Set flashback mode to approximately 1 hour ago:

Scope is session
Database-wide scope not available

Need execute privilege on dbms_flashback

exec DBMS_FLASHBACK.ENABLE_AT_TIME (SYSDATE - (1/24));
SELECT * FROM ord;
exec DBMS_FLASHBACK.DISABLE;

exec DBMS_FLASHBACK.ENABLE_AT_TIME (SYSDATE - (1/24));
SELECT * FROM ord;
exec DBMS_FLASHBACK.DISABLE;

The dbms_flashback package is one method used to enable flashback mode.
The ENABLE_AT_TIME procedure enables flashback mode to the specified time.
For flashback support, Oracle saves an SCN every five minutes. The time specified
in the ENABLE_AT_TIME procedure is converted to the next lower SCN.
Only the current session is affected by flashback query mode. Database-wide
support is not available. Users will need EXECUTE privilege on the
dbms_flashback supplied package.

Supplemental Notes:
To change the flashback time, you must disable flashback mode and re-enable.
See the DISABLE example later in this section.
Error “ORA-08180: no snapshot found based on specified time” if flashback time
too old, I.e. an earlier time than any UNDO data exists for.
Error “ORA-01466: unable to read data - table definition has changed”
returned if a table involved in the flashback operation (SELECT, INSERT) did not
exist at the specified flashback time or was altered after the specified flashback
time.
Error “ORA-08182: operation not supported while in Flashback mode” if DML is
attempted while in flashback mode.

Flashback QueryFlashback Query 2.2.44

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

2.2.44

Statement Level FlashbackStatement Level Flashback
9i Release 2 provides statement level support

select lastname
from customer AS OF timestamp

to_timestamp('2003-01-08 05:30:00', 'YYYY-MM-DD HH:MI:SS')

select lastname
from customer AS OF timestamp

to_timestamp('2003-01-08 05:30:00', 'YYYY-MM-DD HH:MI:SS')

select lastname

from employee

minus

select lastname
from employee as of timestamp

to_timestamp('2003-03-09 05:30:00',

'YYYY-MM-DD HH:MI:SS');

select lastname

from employee

minus

select lastname
from employee as of timestamp

to_timestamp('2003-03-09 05:30:00',

'YYYY-MM-DD HH:MI:SS');

Oracle9i Release 2 supports statement-level flashback query. This is implemented
through the “AS OF” clause of the SELECT statement.

Supplemental Notes
9i Release 2 provides robust support for statement-level flashback, including joins,
subqueries, set operations and views using different time or SCN
You can even create a view based on a flashback query. For example, I’d like to
see my customer table as of a day ago:
create or replace view old_customer as

select lastname

from customer

AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' DAY);

Note the use of the new SYSTIMESTAMP function and the INTERVAL datatype.
It is also now easy to restore deleted rows (even if committed) by using flashback
query within INSERT … SELECT and CREATE TABLE AS SELECT commands

Flashback QueryFlashback Query 2.2.55

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

2.2.55

Flashback TipsFlashback Tips
To enable you can also use SCN
ENABLE_AT_SYSTEM_CHANGE_NUMBER

Applications can:
Use GET_SYSTEM_CHANGE_NUMBER at start of
application
Provides a point of return – even if you have
committed

OEM will estimate disk space required for
given UNDO_RETENTION setting

Retention *undo per second * blksize

Example of enabling flashback mode with a SCN:

DECLARE

old_scn NUMBER := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;

BEGIN

.

.

.

EXECUTE DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER(old_scn);

END;

See Oracle9i Application Developer's Guide – Fundamentals for more info on use of
Flashback Query. See Administration Guide for more info on setup of UNDO
management.

Note that Oracle Enterprise Manager will estimate the disk space required for a given
UNDO_RETENTION setting. A rough calculation can be made manually:
Retention setting * undo generated per second (see v$undostat) * block size

Flashback QueryFlashback Query 2.2.66

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

2.2.66

Flashback LimitationsFlashback Limitations
DDL and DML not supported while in flashback
mode
Table structure changes invalidates old UNDO

E.g. DROP COLUMN
Cannot flashback in middle of transaction (ORA-
08183)
ENABLE_AT_TIME maximum SYSDATE-5

Server uptime (not clock time)
Use SCN to go back farther

Remote access via DBLINK not supported

Flashback QueryFlashback Query 2.2.77

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

2.2.77

SummarySummary
Flashback Query allows SELECT as if it was
being run at a previous point in time
Provides “self-service error correction”
Should use Automatic Undo Management
Enable with DBMS_FLASHBACK package or
“AS OF” clause on SELECT

Use Time or SCN

External TablesExternal Tables 3.3.11

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.
SKILLBUILDERS

3. External Tables3. External Tables
Concepts

Use
Tips

Limitations
Summary

External TablesExternal Tables 3.3.22

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

3.3.22

External Tables External Tables -- ConceptsConcepts
Allows one to access external files as if it were a
table
Provides a good Extraction, Transformation and
Load (ETL) tool
Table can only be accessed in read-only mode
All SQL query operations supported

Select, Join, MERGE, source for INSERT, multi-table INSERT,
Views

Needs an Access Driver
Program that can parse flat file

ORACLE_LOADER Access Driver is supplied
It is really SQL*Loader

The new “ORGANIZATION EXTERNAL” clause of the CREATE TABLE command is
used to access a flat file as if it were an Oracle table. The flat file data can be
queried, but not updated. Indexes are not supported.

External files can be of any format as long as the “Access Driver” can perform the
necessary conversions.

The Access Driver is the program responsible to read the external file into Oracle9i.
Oracle provides a generic access driver called “ORACLE_LOADER”, which is really
SQL*Loader.

External TablesExternal Tables 3.3.33

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

3.3.33

External Tables External Tables –– Use…Use…
First create Oracle DIRECTORY
Directory contains OS file(s)

Contains data!

create or replace directory alert as
'c:\Oracle\admin\dave\bdump';

create or replace directory oraclassdir as
'd:\oraclass\Labs';

grant read on directory external_tables to
public;

create or replace directory alert as
'c:\Oracle\admin\dave\bdump';

create or replace directory oraclassdir as
'd:\oraclass\Labs';

grant read on directory external_tables to
public;

The starting point for using external tables is to create an Oracle directory. The
directory is an Oracle object that points to a server-based operating system
directory. CREATE ANY DIRECTORY privilege is required to create a directory.
The database will require OS privileges to read/write to the OS directory named in
the CREATE DIRECTORY commands (typically, this is accomplished by granting the
OS privileges to the OS user “ORACLE”).

Like all objects, the directory is protected from other database users. You must
GRANT READ privilege on it to users who need query capability.

External TablesExternal Tables 3.3.44

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

3.3.44

……External Tables External Tables –– Use…Use…
SQL> CREATE TABLE alert_log_ext
2 (detail_line VARCHAR2(2000))
3 ORGANIZATION EXTERNAL
4 (
5 TYPE oracle_loader
6 DEFAULT DIRECTORY alert
7 ACCESS PARAMETERS
8 (RECORDS DELIMITED BY NEWLINE
9 nobadfile nologfile nodiscardfile
10 FIELDS (detail_line char(80)))
11 LOCATION('alert_dave.log'))
12 REJECT LIMIT UNLIMITED;

Table created.

SQL> CREATE TABLE alert_log_ext
2 (detail_line VARCHAR2(2000))
3 ORGANIZATION EXTERNAL
4 (
5 TYPE oracle_loader
6 DEFAULT DIRECTORY alert
7 ACCESS PARAMETERS
8 (RECORDS DELIMITED BY NEWLINE
9 nobadfile nologfile nodiscardfile
10 FIELDS (detail_line char(80)))
11 LOCATION('alert_dave.log'))
12 REJECT LIMIT UNLIMITED;

Table created.

After the DIRECTORY has been created, we can create the external table. The
example above illustrates creating an external table based on the database alert
log.

We can see that the “ACCESS PARAMETERS” are just SQL*Loader parameters.
See chapter 11 and 12 of the Oracle9i Utilities manual for more information about
External Tables and Access Parameters.

External TablesExternal Tables 3.3.55

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

3.3.55

……External Tables External Tables –– Use…Use…
select * from alert_log_ext
where detail_line like '%ORA-%'
/

create table alert_log
as select * from alert_log_ext
/

insert /*+ append */ into alert_log
select * from alert_log_ext;

create table temp as
select upper(detail_line) as detail_line
from alert_log_ext
/

select * from alert_log_ext
where detail_line like '%ORA-%'
/

create table alert_log
as select * from alert_log_ext
/

insert /*+ append */ into alert_log
select * from alert_log_ext;

create table temp as
select upper(detail_line) as detail_line
from alert_log_ext
/

Query Query
external tableexternal table

Load external table into a Load external table into a
permanent tablepermanent table

Load with direct Load with direct
path INSERTpath INSERT

Load with SQL Load with SQL
functionsfunctions

External TablesExternal Tables 3.3.66

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

3.3.66

……External Tables External Tables –– UseUse
SQL> create table student_emails_ext
2 (firstname varchar(40),
3 lastname varchar(40),
4 email varchar(80))
5 organization external
6 (
7 type oracle_loader
8 default directory external_tables
9 location ('students_test.txt', 'students_test2.txt')
10) reject limit unlimited;

Table created.

SQL> select * from student_emails_ext;

FIRSTNAME LASTNAME EMAIL
--------------- --------------- ---------------
A Pan apandaiah@hotmail.com

SQL> create table student_emails_ext
2 (firstname varchar(40),
3 lastname varchar(40),
4 email varchar(80))
5 organization external
6 (
7 type oracle_loader
8 default directory external_tables
9 location ('students_test.txt', 'students_test2.txt')
10) reject limit unlimited;

Table created.

SQL> select * from student_emails_ext;

FIRSTNAME LASTNAME EMAIL
--------------- --------------- ---------------
A Pan apandaiah@hotmail.com

This example uses all defaults for the ACCESS PARAMETERS.

We also can see the specification of multiple files in the LOCATION parameter.

External TablesExternal Tables 3.3.77

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

3.3.77

Tips…Tips…
Can use parallel load on fixed length files
Generate external table DDL / Access Parameters
from existing SQL*Loader control files

Gather statistics:
sqlldr scott/tiger ulcase1 EXTERNAL_TABLE=GENERATE_ONLYsqlldr scott/tiger ulcase1 EXTERNAL_TABLE=GENERATE_ONLY

SQL> exec dbms_stats.gather_table_stats('system',
'student_emails_ext')

PL/SQL procedure successfully completed.

SQL> exec dbms_stats.gather_table_stats('system',
'student_emails_ext')

PL/SQL procedure successfully completed.

External TablesExternal Tables 3.3.88

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

3.3.88

……TipsTips
Combine with pipelined functions to create
powerful ETL functions
New dictionary views
*_EXTERNAL_TABLES
*_EXTERNAL_LOCATIONS

Hints are said to work

External TablesExternal Tables 3.3.99

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

3.3.99

LimitationsLimitations
Read only
CONTINUEIF or CONCATENATE

Cannot combine multiple physical records into a
single logical record

Datatypes
GRAPHIC, GRAPHIC EXTERNAL, and
VARGRAPHIC
CLOBs, NCLOBs, BLOBs, LONGs
nested tables, VARRAYs, REFs, primary key
REFs, and SIDs

External TablesExternal Tables 3.3.1010

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

3.3.1010

SummarySummary
Use External tables to query, transform and
load external data
Easy to load

Consider CREATE TABLE AS SELECT
INSERT with Sub-Select

Convenient way to access SQL*Loader

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.11

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.
SKILLBUILDERS

4. Oracle9i New SQL 4. Oracle9i New SQL
FeaturesFeatures

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.22

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.22

9i SQL features9i SQL features
Oracle9i adds:
MERGE statement
Multi-table INSERT
ANSI compliant joins
Subquery Factoring (Named subqueries)
CONNECT BY extensions
New functions
SQL CASE Expression (8.1 feature)

Let’s look at each in turn…

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.33

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.33

MERGEMERGE statement…statement…
Allows one to merge the rows of two tables
Some columns of the merged table may also
be updated simultaneously
Since updates and inserts are performed this
is known as an “upsert” function
Processing of MERGE is more efficient than
writing an equivalent PL/SQL routine
Support for external tables

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.44

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.44

……MERGEMERGE StatementStatement
Merge external table into permanent table
merge into student_emails s

using (select * from student_emails_ext) e

on (s.firstname = e.firstname

and s.lastname = e.lastname)

when matched then

update set s.email = e.email

when not matched then

insert (s.firstname, s.lastname, s.email)

values(e.firstname , e.lastname, e.email);

merge into student_emails s

using (select * from student_emails_ext) e

on (s.firstname = e.firstname

and s.lastname = e.lastname)

when matched then

update set s.email = e.email

when not matched then

insert (s.firstname, s.lastname, s.email)

values(e.firstname , e.lastname, e.email);

External tableExternal table

See the script MERGE.SQL for a working example of this code.

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.55

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.55

MultiMulti--Table Table INSERT…INSERT…

The INSERT statement can now affect
multiple tables
External table support
Syntax

INSERT { ALL | FIRST }
[WHEN condition THEN]

INTO tablename
[ELSE INTO tablename]

select clause

The WHEN … THEN … INTO clause, if present, can repeat up to 127 times
involving the same or different tables.

ALL will evaluate every WHEN clause which could result in inserts into multiple
tables. FIRST will stop after the first WHEN clause evaluates to true.

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.66

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.66

……MultiMulti--Table Table INSERTINSERT
insert first
when (country = 'US') then

into domestic_student
(firstname, lastname, email, country)
values(firstname, lastname, email, country)

when (country = 'CA') then
into canada_student
(firstname, lastname, email, country)
values(firstname, lastname, email, country)

else
into other_student
(firstname, lastname, email, country)
values(firstname, lastname, email, country)

select firstname, lastname, email, country
from student_emails_ext;

insert first
when (country = 'US') then

into domestic_student
(firstname, lastname, email, country)
values(firstname, lastname, email, country)

when (country = 'CA') then
into canada_student
(firstname, lastname, email, country)
values(firstname, lastname, email, country)

else
into other_student
(firstname, lastname, email, country)
values(firstname, lastname, email, country)

select firstname, lastname, email, country
from student_emails_ext; External External

TableTable

Here is another example, using the ALL format:
INSERT ALL

INTO customer (firstname, lastname)

VALUES(firstname, lastname)

INTO cust_history (firstname, lastname)

VALUES(firstname, lastname)

SELECT firstname, lastname

FROM employee WHERE dept_no = 23;

Another example, somewhat more complex would be:
INSERT FIRST

WHEN (dept_no = 111) THEN

INTO customer (cust_no, firstname, lastname)
VALUES(emp_no+9000, firstname, lastname)

WHEN (dept_no = 432) THEN

INTO cust_history (cust_no, firstname, lastname)
VALUES(emp_no+9000, firstname, lastname)

ELSE

INTO customer (cust_no, firstname, lastname)
VALUES(emp_no+9000, firstname, lastname)

SELECT emp_no, firstname, lastname, dept_no

FROM employee;

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.77

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.77

ANSI Compliant JoinsANSI Compliant Joins
Oracle9i supports ANSI/ISO SQL99 join
syntax:
NATURAL [join-type] JOIN
CROSS JOIN

Join types supported:
INNER

{LEFT|RIGHT|FULL} [OUTER]

Provided for ANSI/ISO SQL99 conformity

The ANSI compliant join support in Oracle9i now allows one to write joins conformant
to SQL99 syntax. You might find this syntax to be more intuitive than what was offered
in earlier releases of Oracle.

The Oracle syntax notes show that there are two ways to code the ANSI join.
Technique 1:
table_reference { CROSS JOIN | NATURAL [join_type] JOIN table_reference } }

Technique 2:
table_reference { [join_type] JOIN table_reference

{ ON condition | USING (column [, column]...) }

“join_type” can be :
{ INNER | { LEFT | RIGHT | FULL } [OUTER] }

The default is INNER. If you specify LEFT, RIGHT or FULL, an OUTER join is performed.
The keyword OUTER is optional, but should, in my opinion, be used for clarity.

Let’s look at each in turn…

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.88

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.88

Natural JoinNatural Join
Natural Join uses like-named columns as
the join condition

Is equivalent to:

SELECT lastname, order_no

FROM customer NATURAL INNER JOIN ord;

SELECT lastname, order_no

FROM customer NATURAL INNER JOIN ord;

SELECT lastname, order_no

FROM customer, ord

WHERE customer.cust_no = ord.cust_no;

SELECT lastname, order_no

FROM customer, ord

WHERE customer.cust_no = ord.cust_no;

In a natural join the database uses the common column name(s) to perform the join.
Since the Customer and Ord tables both have the cust_no column name in
common these columns will be used to perform the join.

The Oracle definition states “A natural join is based on all columns in the two
tables that have the same name. It selects rows from the two tables that have equal
values in the relevant columns.”

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.99

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.99

USINGUSING ClauseClause
Add USING clause to define join column(s):

Add a 3rd table:

select dept_name, lastname
from department INNER JOIN employee

USING (dept_no);

select dept_name, lastname
from department INNER JOIN employee

USING (dept_no);

select dept_name, lastname, count(*)
from department INNER JOIN employee

using (dept_no)
natural inner join ord

group by dept_name, lastname

select dept_name, lastname, count(*)
from department INNER JOIN employee

using (dept_no)
natural inner join ord

group by dept_name, lastname

This join makes use of the USING clause to explicitly state the column on which to
perform the join. Note that the USING clause is part of the FROM clause. The
USING clause supports multiple column names: USING (dept_no, mgr)

You’ll need to remove NATURAL and add the USING clause as shown here because
it is no longer a natural join. Remember, a natural join is all like-named columns
used to join the tables.

Adding a 3rd table is easy. Simply add the next joined table clause such as:

NATURAL INNER JOIN table-name.

Additional Notes:

Use “ON” clause if there are no common columns.
SELECT lastname, order_no
FROM customer JOIN ord
ON customer.cust_number = ord.cust_no;

Outer Join syntax is supported:
SELECT description, nvl(quantity,0)
FROM product LEFT OUTER JOIN ord_item
USING (product_id);

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.1010

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.1010

Subquery Factoring Clause…Subquery Factoring Clause…

Permits reusable subquery within query
Scope is statement

Also called SQL “WITH” clause
Supplies a name for a subquery block
Can be easier to read
Can produce better execution plan

The scope of the named subquery is just the statement in which it appears. It can not
be used in subsequent SQL statements.

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.1111

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.1111

……Subquery Factoring ClauseSubquery Factoring Clause
WITH

average_order AS (SELECT AVG(total_order_price)

AS avg_ord FROM ord),

gold_customers AS (SELECT cust_no FROM ord

WHERE total_order_price >

(SELECT avg_ord FROM

average_order))

SELECT distinct c.cust_no, lastname, firstname,

to_char((select * from average_order),

'$999.99') AS average_order

FROM customer c, gold_customers gc

WHERE c.cust_no = gc.cust_no

WITH

average_order AS (SELECT AVG(total_order_price)

AS avg_ord FROM ord),

gold_customers AS (SELECT cust_no FROM ord

WHERE total_order_price >

(SELECT avg_ord FROM

average_order))

SELECT distinct c.cust_no, lastname, firstname,

to_char((select * from average_order),

'$999.99') AS average_order

FROM customer c, gold_customers gc

WHERE c.cust_no = gc.cust_no

The example above shows the use of subquery factoring to simplify a relatively
complex query. This example creates two named queries: “AVERAGE_ORDER” and
“GOLD_CUSTOMERS.” Note how by naming the subqueries one can make a complex
query more readable and better documented. Also note that the first name subquery
block, “average_order”, is referenced in the second block, “gold_customers”.

The “old” version of this query, or at least one version of it, would look like:

SELECT distinct c.cust_no, lastname, firstname

FROM customer c, (SELECT cust_no FROM ord

WHERE total_order_price >

(select avg(total_order_price) from ord)) gc

WHERE c.cust_no = gc.cust_no

ORDER BY 1;

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.1212

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.1212

CONNECT BY ExtensionsCONNECT BY Extensions
Sort same level siblings by some key

select lpad(' ',2*level-2) ||
lastname as name, hiredate

from employee
start with emp_no = 2
CONNECT BY prior emp_no = mgr
ORDER SIBLINGS BY hiredate;

select lpad(' ',2*level-2) ||
lastname as name, hiredate

from employee
start with emp_no = 2
CONNECT BY prior emp_no = mgr
ORDER SIBLINGS BY hiredate; NAME HIREDATE

--------------- ---------
Anderson 01-FEB-94
Washington 21-APR-94
Doright 02-AUG-94
Wells 02-AUG-94
Perry 15-MAR-95
Barbee 15-JAN-99

Roger 15-MAR-95
Hall 15-AUG-97

NAME HIREDATE
--------------- ---------
Anderson 01-FEB-94
Washington 21-APR-94
Doright 02-AUG-94
Wells 02-AUG-94
Perry 15-MAR-95
Barbee 15-JAN-99

Roger 15-MAR-95
Hall 15-AUG-97

SIBLINGS is a new Oracle9i keyword that sorts all like-level siblings (child) rows by
some key.

In this case I chose to sort by column hiredate.

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.1313

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.1313

9i Hierarchy Path…9i Hierarchy Path…
SYS_CONNECT_BY_PATH function shows path
select lpad(' ',2*level-2) ||

lastname as name,
sys_connect_by_path(lastname, '/') AS path
from employee
start with emp_no = 2
connect by prior

emp_no = mgr;

select lpad(' ',2*level-2) ||
lastname as name,

sys_connect_by_path(lastname, '/') AS path
from employee
start with emp_no = 2
connect by prior

emp_no = mgr; NAME PATH
--------------- ------------------------
Anderson /Anderson
Washington /Anderson/Washington
Doright /Anderson/Doright
Wells /Anderson/Doright/Wells
Perry /Anderson/Doright/Perry
Barbee /Anderson/Doright/Barbee

Roger /Anderson/Roger
Hall /Anderson/Hall

NAME PATH
--------------- ------------------------
Anderson /Anderson
Washington /Anderson/Washington
Doright /Anderson/Doright
Wells /Anderson/Doright/Wells
Perry /Anderson/Doright/Perry
Barbee /Anderson/Doright/Barbee

Roger /Anderson/Roger
Hall /Anderson/Hall

The new Oracle9i function SYS_CONNECT_BY_PATH reveals the hierarchy path for the
specified column. It shows the entire path, from root to node.
The first argument is the column for which we want the path. The second argument is
the separator.

In this example, we see the management chain starting with employee Anderson.

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.1414

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.1414

……9i Hierarchy Path9i Hierarchy Path

select lpad(' ',2*level-2) ||
sys_connect_by_path(lastname, '/') as path

from employee
start with emp_no = 2
connect by prior

emp_no = mgr;

select lpad(' ',2*level-2) ||
sys_connect_by_path(lastname, '/') as path

from employee
start with emp_no = 2
connect by prior

emp_no = mgr; PATH

/Anderson
/Anderson/Washington
/Anderson/Doright
/Anderson/Doright/Wells
/Anderson/Doright/Perry
/Anderson/Doright/Barbee

/Anderson/Roger
/Anderson/Hall

PATH

/Anderson
/Anderson/Washington
/Anderson/Doright
/Anderson/Doright/Wells
/Anderson/Doright/Perry
/Anderson/Doright/Barbee

/Anderson/Roger
/Anderson/Hall

As this example shows, using the SYS_CONNECT_BY_PATH function in conjunction
with the LPAD function creates a useful result.

Note that any column can be used in the SYS_CONNECT_BY_PATH function. For
example:
1 select lpad(' ',2*level-2) || lastname as name,

2 sys_connect_by_path(hiredate, '/') AS path

3 from employee

4 start with emp_no = 2 connect by prior emp_no = mgr;

NAME PATH

-------------------- ------------------------------

Anderson /01-FEB-94

Washington /01-FEB-94/21-APR-94

Doright /01-FEB-94/02-AUG-94

Wells /01-FEB-94/02-AUG-94/02-AUG-94

Perry /01-FEB-94/02-AUG-94/15-MAR-95

Barbee /01-FEB-94/02-AUG-94/15-JAN-99

Roger /01-FEB-94/15-MAR-95

Hall /01-FEB-94/15-AUG-97

However, some columns will provide more useful than others!

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.1515

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.1515

9i Supports Joins9i Supports Joins
CONNECT BY and join now work!
select e1.lastname AS employee,

e2.lastname AS manager
from employee e1, employee e2
where e1.mgr = e2.emp_no(+)
start with e1.emp_no = 2
connect by prior

e1.emp_no = e1.mgr;

select e1.lastname AS employee,
e2.lastname AS manager

from employee e1, employee e2
where e1.mgr = e2.emp_no(+)
start with e1.emp_no = 2
connect by prior

e1.emp_no = e1.mgr;

EMPLOYEE MANAGER
------------ ---------
Anderson
Hall Anderson
Roger Anderson
Doright Anderson
Barbee Doright
Perry Doright
Wells Doright
Washington Anderson

EMPLOYEE MANAGER
------------ ---------
Anderson
Hall Anderson
Roger Anderson
Doright Anderson
Barbee Doright
Perry Doright
Wells Doright
Washington Anderson

In Oracle8i and earlier, CONNECT BY and Join could not be used in the same query.
Oracle9i now provides support for this.

In this example I incorporated a self-outer-join to the Employee table to pick up the
lastname of the employees’ manager.

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.1616

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.1616

New Functions…New Functions…
ASCIISTR – Return argument as ASCII

Example:

Returns:

UNISTR – Return argument as Unicode
Example:

Returns:

SELECT ASCIISTR('Überfluß') FROM DUAL;SELECT ASCIISTR('Überfluß') FROM DUAL;

\00DCberflu\00DF\00DCberflu\00DF

SELECT UNISTR('\00DCberflu\00df') FROM DUAL;SELECT UNISTR('\00DCberflu\00df') FROM DUAL;

Ü b e r f l u ßÜ b e r f l u ß

Several new functions are available with Oracle9i:
ASCIISTR takes as argument any string and returns it translated into ASCII. For
characters that cannot be translated to ASCII an escaped hexadecimal format is
used.
UNISTR takes as argument a string in any character set and translates it into
Unicode.
COMPOSE takes a string as argument and returns it in Unicode with any diacritical
marks combined with the preceding character to form a single character. This is
because in Unicode accented characters can be represented both as a character
by itself or a base character followed by the diacritical mark.
Example: SELECT COMPOSE('de' || UNISTR('\0301') || 'ja' ||
UNISTR('\0300')) FROM DUAL;

Returns: d é j à
DECOMPOSE does the opposite of COMPOSE by replacing single characters with
diacritical marks into two characters.
Example: SELECT DECOMPOSE('déjà') FROM DUAL;
COALESCE generalizes the NVL function by accepting multiple expressions as its
arguments. The function will return the first non null expression or NULL if all
expressions evaluate to null.
Example: SELECT COALESCE(dept_name, to_char(dept_no), ‘HR') || ' Dept'
FROM department;

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.1717

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.1717

……New FunctionsNew Functions
NULLIF

Return NULL if expressions equal
Else return first value

SELECT NULLIF('212', area_code) FROM employee;SELECT NULLIF('212', area_code) FROM employee;

NULLIF takes two expressions as arguments and compares them for equality. If they
are equal the function returns NULL. If they are not equal the function returns the
value of the first expression.

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.1818

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.1818

CASE ExpressionCASE Expression
Easily define number and width of buckets
select
sum (case when salary between 6 and 10 then 1 else 0 end)

as sal_6_10,
sum (case when salary between 11 and 15 then 1 else 0 end)

as sal_11_15,
sum (case when salary between 16 and 20 then 1 else 0 end)

as sal_16_20,
sum (case when salary between 21 and 25 then 1 else 0 end)

as sal_21_25
from employee;

SAL_6_10 SAL_11_15 SAL_16_20 SAL_21_25
---------- ---------- ---------- ----------

4 3 0 2

select
sum (case when salary between 6 and 10 then 1 else 0 end)

as sal_6_10,
sum (case when salary between 11 and 15 then 1 else 0 end)

as sal_11_15,
sum (case when salary between 16 and 20 then 1 else 0 end)

as sal_16_20,
sum (case when salary between 21 and 25 then 1 else 0 end)

as sal_21_25
from employee;

SAL_6_10 SAL_11_15 SAL_16_20 SAL_21_25
---------- ---------- ---------- ----------

4 3 0 2

Histograms can be easily created with the CASE expression used within an SQL
SELECT statement (supported in 8.1.3).

In this example, to show the distribution of salary levels, I have created a histogram
containing 4 buckets and each bucket has a width of 5.

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.1919

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.1919

Miscellaneous FeaturesMiscellaneous Features
Enhanced LOB support

Functions (substr, instr, etc)

Convert LONG to LOB
Scrolling cursors in OCI and JDBC
Object types now support inheritance and type
evolution

select substr(c2,1,1) c2_is_clob

from test

where substr(to_char(c2),1,1) = 'a'

select substr(c2,1,1) c2_is_clob

from test

where substr(to_char(c2),1,1) = 'a'

alter table l modify (c1 clob);alter table l modify (c1 clob);

From the Oracle Oracle9i Application Developer's Guide – Fundamentals
Release2 (9.2)

“The following SQL functions that accept or output character types now accept or
output CLOB data as well:
||, CONCAT, INSTR, INSTRB, LENGTH, LENGTHB, LIKE, LOWER,
LPAD, LTRIM, NLS_LOWER, NLS_UPPER, NVL, REPLACE, RPAD, RTRIM,
SUBSTR, SUBSTRB, TRIM, UPPER

In PL/SQL, all the SQL functions listed above and the comparison operators (>, =, <
and !=), and all user-defined procedures and functions, accept CLOB datatypes as
parameters or output types. You can also assign a CLOB to a character variable
and vice versa in PL/SQL.”

Object types now support all the features required to model OO applications
namely, encapsulation, inheritance and polymorphism (dynamic method dispatch)
making Oracle9i a full object-relational database system.

Oracle9i New SQL FeaturesOracle9i New SQL Features 4.4.2020

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

4.4.2020

Summary of New SQLSummary of New SQL
MERGE

Update and Insert in one statement
Multi-Table Insert

Up to 127 tables
ANSI Joins
Subquery Factoring
Connect By extensions
New Functions

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.11

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.
SKILLBUILDERS

5. Oracle9i PL/SQL 5. Oracle9i PL/SQL
FeaturesFeatures

ANSI CASE Statement
Associative Arrays

Multi-Level Collections
DBMS_METADATA

UTL_FILE

Pipelined Functions
PL/SQL Record-Based DML

Native Compilation

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.22

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

5.5.22

New PL/SQL featuresNew PL/SQL features
Oracle9i adds:

ANSI compliant CASE statement
Multi-level collections
Pipelined Functions
Record-Based DML
Optional Native Compilation
LOB support enhancements
Metadata Access
UTL_FILE enhancements

Let’s look at each in turn

Additional Notes:
In addition to the new features listed above, Oracle9i also adds:

PL/SQL and SQL now uses a common SQL parser so any valid SQL can now
be used in PL/SQL.

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.33

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

5.5.33

ANSI Compliant ANSI Compliant CASECASE

9i R1 introduced CASE statement and CASE
expression

Simple and Searched statements
Use expression within PL/SQL statement, e.g. assignment

[<<label_name>>]
CASE case_operand
WHEN when_operand1 THEN statements1;
WHEN when_operand2 THEN statements2;
. . .

WHEN when_operandN THEN statementsN;
[ELSE statements;]
END CASE [label_name];

[<<label_name>>]
CASE case_operand
WHEN when_operand1 THEN statements1;
WHEN when_operand2 THEN statements2;
. . .

WHEN when_operandN THEN statementsN;
[ELSE statements;]
END CASE [label_name];

Oracle9i Release 1 introduced a PL/SQL CASE statement (Oracle8i added CASE
for SQL statements). CASE can also be coded as an expression if it is desired to
populate a variable with the result of the CASE logic. Examples will follow.

In all versions of the CASE statement the WHEN clause can appear any number of
times. The WHEN clauses are evaluated sequentially. The 1st TRUE WHEN causes
the associated statement(s) to be executed; The CASE statement then ends
(execution continues after the END CASE clause). If none of the WHEN expressions
is true the ELSE statement (if any) will execute.

The CASE statement raises a CASE_NOT_FOUND exception if an ELSE clause is not
provided and none of the WHEN’s are TRUE.

Only one THEN statement (or ELSE statement) is executed for each CASE
statement. There is no “fall-through” as in the C language ‘switch’ statement.

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.44

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

5.5.44

Simple Simple CASECASE
<<salary_test>>
CASE v_sal
WHEN 12 THEN

dbms_output.put_line('Salary is '||v_sal);
v_sal := v_sal * 1.2 ;
dbms_output.put_line('Salary is '||v_sal);

WHEN 14 THEN
dbms_output.put_line('Salary is '||v_sal);
v_sal := v_sal * 1.15 ;
dbms_output.put_line('Salary is '||v_sal);

ELSE
v_sal := v_sal * 1.1 ;

END CASE salary_test;

<<salary_test>>
CASE v_sal
WHEN 12 THEN

dbms_output.put_line('Salary is '||v_sal);
v_sal := v_sal * 1.2 ;
dbms_output.put_line('Salary is '||v_sal);

WHEN 14 THEN
dbms_output.put_line('Salary is '||v_sal);
v_sal := v_sal * 1.15 ;
dbms_output.put_line('Salary is '||v_sal);

ELSE
v_sal := v_sal * 1.1 ;

END CASE salary_test;

Here is an example of a simple CASE statement. Notes:
The label is optional but provides good documentation.
Each THEN can have any number of statements, each terminated with a semi-
colon.
Only the 1st TRUE THEN is executed. Control is transferred to the END CASE
after the 1st TRUE THEN is executed.
If the ELSE is not provided and none of the THEN’s are TRUE, a
CASE_NOT_FOUND exception is raised and control is automatically transferred
to the EXCEPTION block, if coded.

Restriction: The case-operand and the when-operands can be any datatype except
BLOB, BFILE, an object type, a PL/SQL record, an index-by-table, a varray, or a
nested table.

See supplied script CASE1.SQL for a working example of this CASE expression.

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.55

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

5.5.55

Associative ArraysAssociative Arrays
Formerly called Index-By tables
An unbounded array of variables
Use any number or character string as subscript
Useful for lookups
Can be passed as Procedure or Function parameter
Only define-able at PL/SQL level

TYPE table_type_name IS
TABLE OF datatype [NOT NULL]
INDEX BY

[BINARY_INTEGER|VARCHAR2(size)];

TYPE table_type_name IS
TABLE OF datatype [NOT NULL]
INDEX BY

[BINARY_INTEGER|VARCHAR2(size)];

Associative Arrays are a PL/SQL array, used to store lists of data in a PL/SQL
program. This might be helpful for storing data that is repeatedly scanned –
eliminating repetitive access to a database table. It can also be a useful structure
for passing sets of data between PL/SQL programs. Associative Arrays were
introduced with Oracle9i Release 2.
Associative arrays are arrays of variables where the variable can be a scalar type, a
variable defined with %TYPE or a record defined with %ROWTYPE.
Associative arrays are unbounded, meaning that they have is no limit to the number
of elements in the array. (actually, the limit is -2,147,483,647 to +2,147,483,647, or
4.3 billion rows. However, we consider them to be unbounded because you’ll run
out of memory before you’ll ever reach the limit.)
Associate arrays are also considered sparse, in that they do not require a
sequential number of rows. I.e. there can be gaps between element 1 and the
second element.
Associative arrays require an index. The index can be BINARY_INTEGER (a
number) or, with Oracle9i, a VARCHAR2 field.
The elements in a PL/SQL array are not in any particular order and are not
necessarily stored contiguously in memory. The keys used for a PL/SQL table do
not have to be sequential and can be an expression as well as a constant or
variable.

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.66

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

5.5.66

RecordRecord--Based DML…Based DML…
9i R2 supports records in INSERT and UPDATE

DECLARE
cust_rec customer%rowtype;

BEGIN
cust_rec.cust_no := 234;
cust_rec.lastname := 'Anderson';
cust_rec.firstname := 'Dave';
INSERT INTO customer VALUES cust_rec;

EXCEPTION
WHEN dup_val_on_index THEN
UPDATE customer SET ROW = cust_rec
WHERE cust_no = 234;

END;

DECLARE
cust_rec customer%rowtype;

BEGIN
cust_rec.cust_no := 234;
cust_rec.lastname := 'Anderson';
cust_rec.firstname := 'Dave';
INSERT INTO customer VALUES cust_rec;

EXCEPTION
WHEN dup_val_on_index THEN
UPDATE customer SET ROW = cust_rec
WHERE cust_no = 234;

END;

Oracle9i R2 supports PL/SQL records in the INSERT and UPDATE DML
statements.

Note that in the INSERT, “cust_rec” is NOT enclosed in parenthesis. This is
required.

Note the use of the new keyword “ROW” in the UPDATE statement. This allows us to
update the entire row. Unfortunately, it is not possible (yet?) to update a subset of
a row using the ROW keyword.

You can define your own PL/SQL record (as opposed to using %ROWTYPE), but it
must be completely compatible with the table row. I.e. You cannot define only a
subset of columns.

See the supplied script RECORD.SQL for working code examples of record-based
DML.

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.77

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

5.5.77

……RecordRecord--Based DMLBased DML
DECLARE

Type cust_rec_t is RECORD
(cust_no number,

lastname varchar2(25),
firstname varchar2(25));

Type cust_tab_t is table of cust_rec_t;
cust_tab cust_tab_t;

BEGIN
UPDATE customer
SET area_code = '917'
WHERE area_code = '212'
RETURNING cust_no, lastname, firstname
BULK COLLECT INTO cust_tab;
. . .

END;

DECLARE
Type cust_rec_t is RECORD

(cust_no number,
lastname varchar2(25),
firstname varchar2(25));

Type cust_tab_t is table of cust_rec_t;
cust_tab cust_tab_t;

BEGIN
UPDATE customer
SET area_code = '917'
WHERE area_code = '212'
RETURNING cust_no, lastname, firstname
BULK COLLECT INTO cust_tab;
. . .

END;

Another new supported use of PL/SQL records is in the BULK COLLECT INTO
clause.

We see in this example that we return (using bulk collect) all effected customers
(customers who are updated) into the collection “cust_tab” which is based on the
record “cust_rec_t”.

Note that it is still required to code all the individual column names in the
RETURNING clause, even if you desire to return all columns. “RETURNING *” is not
supported.

See the supplied script RECORD.SQL for working code examples of record-based
DML.

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.88

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

5.5.88

MultiMulti--Level CollectionsLevel Collections
Oracle9i supports collections nested in collections
Allows the creation of multi-dimensional Associative Arrays
(formerly Index-By Tables) and VARRAYs

SQL> DECLARE
2 TYPE x IS VARRAY(30) OF INTEGER;
3 TYPE y IS VARRAY(20) OF x;
4
5 myvar_x x := x(234,42,23,42); -- init first element
6 myvar_y y := y(x(0), myvar_x, x(54,65,34,44));
7 BEGIN
8 dbms_output.put_line(myvar_y(3)(2));
9 END;
10 /
65

PL/SQL procedure successfully completed.

SQL> DECLARE
2 TYPE x IS VARRAY(30) OF INTEGER;
3 TYPE y IS VARRAY(20) OF x;
4
5 myvar_x x := x(234,42,23,42); -- init first element
6 myvar_y y := y(x(0), myvar_x, x(54,65,34,44));
7 BEGIN
8 dbms_output.put_line(myvar_y(3)(2));
9 END;
10 /
65

PL/SQL procedure successfully completed.

Oracle9i supports multi-level (multi-dimensional) arrays through the support of
collections within collections.

In this example, “y” is now an array of 20 “x”.

To use the multi-dimensional varray simply define a variable of that type. You must
initialize each value of the varray before you can access them.

The following statement declares myvar and initializes one y element containing only
null x elements:

myvar y := y();

The following declares and initializes one y element containing one x element which
only contains nulls:

myvar y := y(x(null, null, null));

To access myvar as a two dimensional varray use the following syntax:
myvar(1)(1) := 123;

See the provided script ‘multi_level_collections.sql’ for a working example.

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.99

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

5.5.99

Pipelined Functions…Pipelined Functions…
Extraction, Transformation & Load (ETL) feature
Extension to 8i Table Functions feature

Function is row source
Pipelined function starts returning rows before
function completes
Caller can resume; start consuming rows

Can be more efficient
Intermediate collection storage not required

Uses less memory

Oracle9i provided an enhancement to table functions called “pipelined functions.” The
purpose of pipelining is efficiency. The pipelined function starts returning rows (piping
rows) back to the caller before the function even completes. (Remember that in the
previous example, the function passed back a complete, populated collection on the
RETURN instruction.) In addition to passing rows back to the caller as soon as
possible, the pipelined function does not require potentially large memory area to hold
a populated collection – as the previous example did.

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.1010

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

5.5.1010

……Pipelined FunctionsPipelined Functions
create or replace function month_generator

(p_num_months in number)
RETURN sqlMONTH_TABLEtype
PIPELINED

AS
month_table sqlMONTH_TABLEtype

:= sqlMONTH_TABLEtype();
BEGIN

for i in 1..p_num_months loop
PIPE ROW (add_months(sysdate, -i));

end loop;
return;

END;
/

create or replace function month_generator
(p_num_months in number)
RETURN sqlMONTH_TABLEtype
PIPELINED

AS
month_table sqlMONTH_TABLEtype

:= sqlMONTH_TABLEtype();
BEGIN

for i in 1..p_num_months loop
PIPE ROW (add_months(sysdate, -i));

end loop;
return;

END;
/

Here is an example of a pipelined function. This function performs the same function
as the previous month_generator function, but is more efficient because:

the PIPE ROW instruction “pipes” rows back to the caller immediately – before
the function fully completes, and
the function requires less memory because it does not have to fully populate the
collection and pass the collection back to the caller, it simply passes the rows
back as it creates them (with the PIPE ROW statement).

Notables:
Use the PIPELINED keyword in the function header to define a pipelined
function.
Use the PIPE ROW statement to send the rows back to the caller.
Do NOT code any return value on the RETURN instruction.

See supplied script TABLEFUNC2.SQL for a working example.

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.1111

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

5.5.1111

Native CompilationNative Compilation
Optionally compile PL/SQL into C

Linked into Oracle kernel
Computationally intensive routines will benefit

Tests show up to 2 times as fast
DBA sets up

Update $ORACLE_HOME/plsql/spnc_makefile.mk
Set init.ora parameters

ALTER SESSION SET plsql_compiler_flags = native;
CREATE PROCEDURE test AS
BEGIN

DBMS_OUTPUT.PUT_LINE('Hello');
END;

ALTER SESSION SET plsql_compiler_flags = native;
CREATE PROCEDURE test AS
BEGIN

DBMS_OUTPUT.PUT_LINE('Hello');
END;

Oracle9i provides optional native compilation for PL/SQL programs. When native
compilation is used, Oracle will convert the PL/SQL into C, compile the C into object
code, then linked into the Oracle executable (kernel). When the routine is invoked,
Oracle simply calls the linked subroutine.

Programs that are reliant on lots of computations will run faster when compiled
natively. Tests show up to 2x as fast as interpreted routines. (See
asktom.oracle.com and search on “oracle9i pl/sql native compile” for
some good examples.)

The DBA will need to setup the server for native compilation before it can be used.

Additional Notes
Refer to the init.ora parameters plsql_native_make_utility and
plsql_native_make_file_name when preparing your server for native
compilation.
Query the data dictionary view USER_STORED_SETTINGS to determine the
compilation method. The PARAM_VALUE column will contain NATIVE if native
compilation was used to create the object.

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.1212

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

5.5.1212

LOBLOB SupportSupport
Comparison operations on LOBs

With ALTER to change LONG to LOB, now have
transparent path to LOBs

1 declare
2 v1 clob := 'abc';
3 begin
4 If v1 = 'abc' then null; end if;
5* end;

SQL> /

PL/SQL procedure successfully completed.

1 declare
2 v1 clob := 'abc';
3 begin
4 If v1 = 'abc' then null; end if;
5* end;

SQL> /

PL/SQL procedure successfully completed.

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.1313

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

5.5.1313

UTL_FILEUTL_FILE ImprovementsImprovements
Searches Oracle DIRECTORY

Replaces init parameter UTL_FILE_DIR
Change w/o restarting database

Read and write binary files
PUT_RAW / GET_RAW

Remove files
FREMOVE

More…

1* create directory seq_files as 'C:\Oracle\oradata\external'
SQL> /
Directory created.

1* create directory seq_files as 'C:\Oracle\oradata\external'
SQL> /
Directory created.

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.1414

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

5.5.1414

Metadata Access…Metadata Access…
DBMS_METADATA package allows access to object
information

See next page for output…

SELECT
DBMS_METADATA.GET_DDL('TABLE',

'CUSTOMER', 'SCOTT') FROM DUAL;
SELECT

DBMS_METADATA.GET_XML('TABLE',
'CUSTOMER', 'SCOTT') FROM DUAL;

SELECT
DBMS_METADATA.GET_DDL('TABLE',

'CUSTOMER', 'SCOTT') FROM DUAL;
SELECT

DBMS_METADATA.GET_XML('TABLE',
'CUSTOMER', 'SCOTT') FROM DUAL;

The first query allows one to retrieve the DDL that can create the Customer table.
The second query retrieves the Customer table metadata in XML format.

See the supplied script METADATA.SQL for a working example.

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.1515

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

5.5.1515

……Metadata AccessMetadata Access
SQL> set linesize 4000
SQL> Set long 4000
SQL> set heading off
SQL> SELECT
2 DBMS_METADATA.GET_DDL('TABLE','CUSTOMER','DAVE')
3 FROM DUAL;

CREATE TABLE "DAVE"."CUSTOMER"
("CUST_NO" NUMBER(*,0),

"LASTNAME" VARCHAR2(20) NOT NULL ENABLE,
"FIRSTNAME" VARCHAR2(15) NOT NULL ENABLE,
"MIDINIT" VARCHAR2(1),
"CITY" VARCHAR2(20),
"STATE" VARCHAR2(2),
. . .

SQL> set linesize 4000
SQL> Set long 4000
SQL> set heading off
SQL> SELECT
2 DBMS_METADATA.GET_DDL('TABLE','CUSTOMER','DAVE')
3 FROM DUAL;

CREATE TABLE "DAVE"."CUSTOMER"
("CUST_NO" NUMBER(*,0),

"LASTNAME" VARCHAR2(20) NOT NULL ENABLE,
"FIRSTNAME" VARCHAR2(15) NOT NULL ENABLE,
"MIDINIT" VARCHAR2(1),
"CITY" VARCHAR2(20),
"STATE" VARCHAR2(2),
. . .

The complete example:
LOCAL> set heading off
LOCAL> l

1* SELECT DBMS_METADATA.GET_DDL('TABLE', 'CUSTOMER', 'DAVE') FROM DUAL
LOCAL> /

CREATE TABLE "DAVE"."CUSTOMER"
("CUST_NO" NUMBER(*,0),

"LASTNAME" VARCHAR2(20) NOT NULL ENABLE,
"FIRSTNAME" VARCHAR2(15) NOT NULL ENABLE,
"MIDINIT" VARCHAR2(1),
"STREET" VARCHAR2(30),
"CITY" VARCHAR2(20),
"STATE" VARCHAR2(2),
"ZIP" VARCHAR2(5),
"ZIP_4" VARCHAR2(4),
"AREA_CODE" VARCHAR2(3),
"PHONE" VARCHAR2(8),
"COMPANY_NAME" VARCHAR2(50),
PRIMARY KEY ("CUST_NO")

USING INDEX PCTFREE 10 INITRANS 2 MAXTRANS 255
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645

PCTINCREASE 0
FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "TOOLS" ENABLE)
PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 LOGGING
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645

PCTINCREASE 0
FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "TOOLS"

Oracle9i PL/SQL FeaturesOracle9i PL/SQL Features 5.5.1616

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

5.5.1616

Summary of PL/SQL Summary of PL/SQL
FeaturesFeatures

ANSI compliant CASE statement
Associate Arrays
Multi-level collections
Record-Based DML
Pipelined Functions
Native Compilation
Enhanced LOB support
UTL_FILE Enhancements
Metadata Access
And, . . . Common Parser

PL/SQL now uses same SQL parser

Oracle9i New Data TypesOracle9i New Data Types 6.6.11

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.
SKILLBUILDERS

6. New Datatypes6. New Datatypes

Datetime Datatypes
INTERVAL Datatypes
XMLType Datatype

Oracle9i New Data TypesOracle9i New Data Types 6.6.22

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

6.6.22

Intro to 9i Datetime…Intro to 9i Datetime…
9i DATETIME datatype provides support for
fractional seconds and time zones
Datetime datatype stores some or all of:

Year, Month, Day
Hour, Minute Second, Fractional second
Time Zone hour displacement

Displacement from UTC
Time Zone minute displacement
Time Zone region name
Time Zone abbreviation

Oracle9i provides new datatypes for dealing with date and time data. There are three
new “datetime” datatypes, so-called because they contain both date and time data.
The primary enhancement is the ability to save and manage time zone data. This
could be an assist for those of us writing applications used in multiple time zones.

Oracle9i New Data TypesOracle9i New Data Types 6.6.33

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

6.6.33

……Intro to 9i DatetimeIntro to 9i Datetime
3 new datetime datatypes
TIMESTAMP

DATE with up to 9 digits of fractional seconds
TIMESTAMP WITH TIME ZONE

Timestamp with timezone preserved
TIMESTAMP WITH LOCAL TIME ZONE

TIMESTAMP normalized to DB time zone
Converts to DB time zone on INSERT
Converts to Session time zone on SELECT

Three new datetime datatypes are available. Examples and more details are provided
on the following pages.

Timestamp gives us fractional seconds, but no time zone support. 6 digits of
fractional seconds are provided by default. 9 digits is the maximum. Override by
specifying number of digits, e.g. TIMESTAMP(2).
Timestamp with Time Zone (TSTZ) gives us fractional seconds and time
zone support. TSTZ always remembers the time zone inserted with the datetime
data, and makes no adjustments to the datetime data.
Timestamp with Local Time Zone (TSLTZ) gives us fractional seconds
and time zone support. TSLTZ never remembers the time zone inserted, but
adjusts the datetime from the session time zone to the database time zone during
the insert operation. Oracle will again adjust the datetime data when selecting,
changing from database time zone to the time zone of the session the query is
running in.

Oracle9i New Data TypesOracle9i New Data Types 6.6.44

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

6.6.44

Datetime Example…Datetime Example…

TSTZ saves time zone
Useful when need to remember TZ of input

TSLTZ: INSERTS data in the DB time zone
Converts time to DB on way in
Converts time to session on way out

CREATE TABLE new_types (
a TIMESTAMP,
b TIMESTAMP WITH TIME ZONE
c TIMESTAMP WITH LOCAL TIME ZONE);

CREATE TABLE new_types (
a TIMESTAMP,
b TIMESTAMP WITH TIME ZONE
c TIMESTAMP WITH LOCAL TIME ZONE);

See the supplied script DATETIME.SQL for a working example of a PL/SQL program
that utilizes datetime data.

Oracle9i New Data TypesOracle9i New Data Types 6.6.55

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

6.6.55

……Datetime ExampleDatetime Example
Session1 forced into Dublin time zone:

Session 2 in US Eastern time zone:

alter session set time_zone = 'Europe/Dublin';

insert into new_types
values ('26-APR-02 04.34.29.123456 AM',

'26-APR-02 04.34.29.123456 AM Africa/Cairo',
'26-APR-02 04.34.29.123456 AM');

alter session set time_zone = 'Europe/Dublin';

insert into new_types
values ('26-APR-02 04.34.29.123456 AM',

'26-APR-02 04.34.29.123456 AM Africa/Cairo',
'26-APR-02 04.34.29.123456 AM');

select * from new_types
26-APR-02 04.34.29.123456 AM
26-APR-02 04.34.29.123456 AM AFRICA/CAIRO
25-APR-02 10.34.29.123456 PM

select * from new_types
26-APR-02 04.34.29.123456 AM
26-APR-02 04.34.29.123456 AM AFRICA/CAIRO
25-APR-02 10.34.29.123456 PM

Notice the following:
Time zone information is irrelevant to TIMESTAMP data (column 1)
Time zone of the inserting session is preserved for TIMESTAMP WITH TIME
ZONE data.
Time zone of the inserting session is lost for TIMESTAMP WITH LOCAL TIME
ZONE data. However, the time is adjusted to the session time zone as it is
selected from the database.

Oracle9i New Data TypesOracle9i New Data Types 6.6.66

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

6.6.66

Datetime Related ItemsDatetime Related Items
New PL/SQL literals

TIMESTAMP
DATE

New functions
dbtimezone and sessiontimezone
TO_TIMESTAMP
TO_TIMESTAMP_TZ

Math
Addition and subtraction of datetime data
Datetime – Datetime produces INTERVAL type

9i provides two new ANSI-compliant literals for use with TIMESTAMP and DATE data.
We will see examples of these literals on the following pages.
Similar to the TO_DATE function, Oracle provides the TO_TIMESTAMP and
TO_TIMESTAMP_TZ functions for converting character strings to TIMESTAMP data.
Refer the the Oracle SQL Reference for more information.
Like DATE data, we will need – and Oracle provides – the ability to add and subtract
from datetime data. Refer the the Oracle SQL Reference (9.2), section “Basic
Elements of Oracle SQL, 2 of 10” for more information.

Additional Notes:
Oracle9i also introduces 2 new INTERVAL datatypes to support the concept of
time intervals. A time interval is any period of time, e.g. 1 year, 8 hours, or 7 days
+ 4 hours.
INTERVAL YEAR TO MONTH Datatype - stores a period of time using the YEAR
and MONTH datetime fields.
INTERVAL DAY TO SECOND Datatype - stores a period of time in terms of days,
hours, minutes, and seconds.
Refer to the SQL Reference for more information on the INTERVAL datatypes.

Oracle9i New Data TypesOracle9i New Data Types 6.6.77

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

6.6.77

INTERVAL TypesINTERVAL Types
Elapsed time between two timestamps

INTERVAL YEAR [precision] TO MONTH
INTERVAL DAY [precision]TO SECOND[precision]

SQL> declare
2 t1 timestamp := current_timestamp + 1 ;
3 i1 INTERVAL DAY TO SECOND;
4 begin
5 i1 := t1 - current_timestamp;
6 dbms_output.put_line(i1);
7 end;
8 /

+00 23:59:59.133000

PL/SQL procedure successfully completed.

SQL> declare
2 t1 timestamp := current_timestamp + 1 ;
3 i1 INTERVAL DAY TO SECOND;
4 begin
5 i1 := t1 - current_timestamp;
6 dbms_output.put_line(i1);
7 end;
8 /

+00 23:59:59.133000

PL/SQL procedure successfully completed.

Oracle9i New Data TypesOracle9i New Data Types 6.6.88

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

6.6.88

XML in the DatabaseXML in the Database
9i introduces XMLType
Store native XML in a table column
XMLType and related functions collectively
called “XML DB”
XMLType supports

XPath searches
XSL Transformations
OLAP Functions
More…

Oracle provides a data type and related functions that they collectively call “XML
DB”.

Oracle9i R1 introduced the ability to store native XML documents in the database.
This is accomplished with the new data type called XMLType. We can perform
Xpath searches, XSL transformations and more on XMLType data.

Oracle9i New Data TypesOracle9i New Data Types 6.6.99

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

6.6.99

Using Using XMLTypeXMLType

XMLType is an Object Type
Use in PL/SQL and CREATE TABLE

create table all_my_ddl
(ddl_id number primary key,
ddl xmltype);

create table all_my_ddl
(ddl_id number primary key,
ddl xmltype);

DECLARE
v_ddl XMLType;
v_text varchar2(100);

BEGIN
. . .

DECLARE
v_ddl XMLType;
v_text varchar2(100);

BEGIN
. . .

XMLType is a valid Oracle data type and can be used in the CREATE TABLE
command and in PL/SQL blocks.

Oracle9i New Data TypesOracle9i New Data Types 6.6.1010

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

6.6.1010

Inserting XMLInserting XML
Use the XMLTYPE constructor (function) to
insert XML

insert into all_my_ddl
values (1,
xmltype(
(SELECT DBMS_METADATA.GET_XML('TABLE',

'CUSTOMER',
'STUDENT1')

FROM DUAL)
)
);

insert into all_my_ddl
values (1,
xmltype(
(SELECT DBMS_METADATA.GET_XML('TABLE',

'CUSTOMER',
'STUDENT1')

FROM DUAL)
)
);

Oracle 9.2 provides a constructor method called “XMLTYPE” to INSERT XML into a
XMLType column.

In this example I use the output of the GET_XML procedure call to generate the XML
document to be inserted into my table.

Note that Oracle 9.1 provided a static method called XMLType.createxml() for
the same purpose:

insert into all_my_ddl

values (2,

xmltype.createxml((SELECT DBMS_METADATA.GET_XML('TABLE', 'ORD',
'STUDENT1') FROM DUAL)));

Oracle9i New Data TypesOracle9i New Data Types 6.6.1111

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

6.6.1111

Extracting XML…Extracting XML…
Extract value of a single node:

select
extractvalue(ddl, '/ROWSET/ROW/TABLE_T/TS_NAME')
AS tsname

from all_my_ddl

TSNAME

USERS

select
extractvalue(ddl, '/ROWSET/ROW/TABLE_T/TS_NAME')
AS tsname

from all_my_ddl

TSNAME

USERS

The EXTRACTVALUE function can be used to display the text values of a single
(non-repeating) node. Pass the column name and slash-delimited path in XPath
notation.

In this example we can see that the DDL saved in my table indicates the table was
created in the USERS tablespace.

Oracle9i New Data TypesOracle9i New Data Types 6.6.1212

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

6.6.1212

……Extracting XMLExtracting XML
Use EXTRACT to display value in repeating node

select extract(ddl,
'/ROWSET/ROW/TABLE_T/COL_LIST/COL_LIST_ITEM/NAME')
AS col_name

from all_my_ddl
where extractvalue(ddl,

'/ROWSET/ROW/TABLE_T/SCHEMA_OBJ/NAME')
= 'CUSTOMER';

select extract(ddl,
'/ROWSET/ROW/TABLE_T/COL_LIST/COL_LIST_ITEM/NAME')
AS col_name

from all_my_ddl
where extractvalue(ddl,

'/ROWSET/ROW/TABLE_T/SCHEMA_OBJ/NAME')
= 'CUSTOMER';

COL_NAME

<NAME>CUST_NO</NAME>
<NAME>LASTNAME</NAME>
<NAME>FIRSTNAME</NAME>

COL_NAME

<NAME>CUST_NO</NAME>
<NAME>LASTNAME</NAME>
<NAME>FIRSTNAME</NAME>

When a collection of nodes can be returned it is necessary to use EXTRACT rather
than EXTRACTVALUE.

In this example the NAME node repeats N times – once for each column in a table.

Oracle9i New Data TypesOracle9i New Data Types 6.6.1313

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

6.6.1313

PL/SQL and XMLPL/SQL and XML
DECLARE

v_ddl XMLType;
v_text varchar2(100);

BEGIN
select ddl into v_ddl
from all_my_ddl
where ddl_id = 1;
v_text := v_ddl.extract

('/ROWSET/ROW/TABLE_T/TS_NAME/text()'
).getstringval;

dbms_output.put_line(v_text);
END;

DECLARE
v_ddl XMLType;
v_text varchar2(100);

BEGIN
select ddl into v_ddl
from all_my_ddl
where ddl_id = 1;
v_text := v_ddl.extract

('/ROWSET/ROW/TABLE_T/TS_NAME/text()'
).getstringval;

dbms_output.put_line(v_text);
END;

PL/SQL has been enhanced to support access to XMLType data.

Oracle9i New Data TypesOracle9i New Data Types 6.6.1414

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

6.6.1414

Other XML FeaturesOther XML Features
Create index on XMLType node
Many more functions
UPDATEXml for UPDATE statements
XMLTransform for XSLT transformations

For more information see
Oracle XML Database Developers Guide, 9.2

Oracle9i R2 includes robust support for storing native XML in the database. For
example, indexing a node in the XML document is a possibility. There are also
many more functions available than the ones shown in this section.

See the following Oracle manuals for more information:
XML API Reference - XDK and Oracle XML DB
XML Database Developer's Guide - Oracle XML DB
XML Developer's Kits Guide - XDK

See the supplied script XML1.SQL for working XML demonstration code.

Oracle9i New Data TypesOracle9i New Data Types 6.6.1515

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

6.6.1515

Datatype SummaryDatatype Summary
Datetime datatypes include

TIMESTAMP
TIMESTAMP WITH TIME ZONE

“Remembers” time zone inputted
TIMESTAMP WITH LOCAL TIME ZONE

Normalizes time
INTERVAL datatypes

Holds time duration (elapsed time)
Use in arithmetic operations involving timestamps, intervals

XMLType
Native XML support in table column

Database applications that support cross-time zone data will often benefit from the
new TIMESTAMP datatypes.

Refer to the Oracle Globalization Guide for some good examples of using datetime
data.

Resumable Space ManagementResumable Space Management 7.7.11

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.
SKILLBUILDERS

7. Resumable Space 7. Resumable Space
ManagementManagement

Concepts
Enabling

Monitoring

Resumable Space ManagementResumable Space Management 7.7.22

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

7.7.22

Introduction to Resumable Introduction to Resumable
Space Management…Space Management…

Manages space allocation failures
Reduces rework

Suspends a transaction
Intercepts error
Allows DBA to correct

Allows a transaction to resume
Automatically restarts

Transaction can be suspended and resumed
multiple times during execution

Most DBAs have run into space allocation errors before; unable to extend a
segment within a tablespace, maximum number of extents reached, and exceeding
a tablespace quota.

In earlier releases of Oracle, all of these conditions were easy to correct, but the
main problem was that the transaction causing one of these conditions to occur had
to be RESTARTED from the beginning, resulting in lost time. This can become very
frustrating for everyone involved, especially if the problem happens again after the
transaction has been restarted for a second or third time.

With RSM, the transaction that has encountered the space allocation error is
suspended for a period of time - allowing you to fix the suspend condition and
eventually allowing the transaction to resume. This is a very valuable enhancement
that could result in a huge amount of saved time especially in systems where there
are large data loads or large transactions coupled with vague data requirements.

Resumable Space ManagementResumable Space Management 7.7.33

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

7.7.33

……Introduction to Resumable Introduction to Resumable
Space ManagementSpace Management

RSM protection provided at the session level
For a RSM enabled session:

Automatic transaction suspension after
encountering a space allocation error

Transaction will appear to hang
No message to user
Data dictionary views are available to the DBA for
diagnosing the problem

Automatic transaction continuance when error is
corrected

If RSM is configured for a particular session and a suspend condition is encountered,
the user’s session will appear to hang. It is not initially obvious whether the problem is
a locking problem, a performance problem, or a statement suspension.

Once such a problem is reported, you should go through your normal diagnostic
process to determine the cause of the reported problem. Besides checking for locking
and performance issues, in Oracle9i you can also check for the possibility that a
statement has been suspended. This is done with several data dictionary views which
are covered later in the Monitoring RSM section.

After correcting the problem, the user’s transaction or statement resumes processing
until it either completes or is suspended again.

Resumable Space ManagementResumable Space Management 7.7.44

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

7.7.44

Errors HandledErrors Handled
Errors handled include

Unable to extend segment
ORA-1650, ORA-1653, ORA-1654

Max extents reached
ORA-1628, ORA-1631, ORA-1632

Exceeding a tablespace quota
ORA-1536

RSM handles a number of space allocation errors. The following errors can be
suspended to allow you time to correct a space allocation problem so that the
transaction may resume without losing any work.

Unable to extend segment
ORA-01650 unable to extend rollback segment xxx by xxx in tablespace xxx

ORA-01653 unable to extend table xxx by xxx in tablespace xxx

ORA-01654 unable to extend index xxx by xxx in tablespace xxx

Max extents reached
ORA-01628 max # extents xxx reached for rollback segment string xxx

ORA-01631 max # extents xxx reached in table xxx

ORA-01632 max # extents xxx reached in index xxx

Exceeding a tablespace quota
ORA-01536 space quota exceeded for tablespace xxx

Resumable Space ManagementResumable Space Management 7.7.55

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

7.7.55

Enabling RSMEnabling RSM
Done at the session level
Consider ON LOGON trigger
Use ALTER SESSION or dbms_resumable
Example: Enable RSM, suspend transaction for 3
hours:

Must have RESUMABLE system privilege

alter session enable resumable timeout 10800

name 'Update of hr table';

alter session enable resumable timeout 10800

name 'Update of hr table';

SQL> alter session disable resumable;

Session altered.

SQL> alter session disable resumable;

Session altered.

Enabling RSM is accomplished at the session level with either the ALTER SESSION
command or programmatically with the DBMS_RESUMABLE supplied package.

The TIMEOUT option specifies in seconds the amount of time a transaction will
suspend once it has encountered a space allocation error. If TIMEOUT is not
defined it defaults to two hours. If the TIMEOUT period has expired without the
space allocation error being corrected the transaction is terminated with the error
message that caused the suspension along with the following error message:

ORA-30032: the suspended (resumable) statement has timed out

Before an Oracle user can take advantage of the Resumable Space Management
feature, they must have been granted the RESUMABLE system privilege.

SQL> grant resumable to app_developer;

Grant succeeded.

Resumable Space ManagementResumable Space Management 7.7.66

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

7.7.66

Monitoring RSM…Monitoring RSM…
Considered a DBA responsibility
New data Dictionary Views
DBA_RESUMABLE, USER_RESUMABLE

SQL> select u1.username, r1.name, status, timeout
2 from dba_resumable r1, dba_users u1
3 where u1.user_id = r1.user_id;

USERNAME NAME STATUS TIMEOUT
--------- ------------------ --------- -------
SYSTEM Update of hr table SUSPENDED 10800

SQL> select u1.username, r1.name, status, timeout
2 from dba_resumable r1, dba_users u1
3 where u1.user_id = r1.user_id;

USERNAME NAME STATUS TIMEOUT
--------- ------------------ --------- -------
SYSTEM Update of hr table SUSPENDED 10800

There are several places you can monitor the suspension of a transaction. You can
query the new DBA_RESUMABLE and USER_RESUMABLE show sessions in
resumable mode and their status. V$SESSION_WAIT, V$SYSTEM_EVENT, and
V$SESSION_EVENT also show information about sessions that have been
suspended along with other non-related database events.

Some important columns in the DBA_RESUMABLE view:
USERNAME – User id of suspended session.
SESSION_ID – Session id of the statement is resumable mode.
SQL_TEXT – The first 1000 bytes of the SQL statement.
NAME – The comment given when resumable mode was enabled.
STATUS – The status of the SQL statement. SUSPENDED or NORMAL.
TIMEOUT – The timeout duration in seconds if the SQL statement should
suspend.
START_TIME – The time the SQL statement started.
ERROR_MSG – The error message of the error encountered.
SUSPEND_TIME – The time when the SQL statement was suspended.
RESTART_TIME – The time when the SQL statement was resumed.

Resumable Space ManagementResumable Space Management 7.7.77

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

7.7.77

……Monitoring RSMMonitoring RSM
An entry is recorded in the alert log for when a
session:

Suspends
Identifies the error that caused the suspension

Resumes
Times out

Mon May 20 15:29:23 2002

statement in resumable session 'User ORDER_USER(40), Session 7,
Instance 1' was suspended due to

ORA-01653: unable to extend table ORDER_USER.ORDER_SUMMARY
by 16 in tablespace ORDER_TBS

Mon May 20 15:29:23 2002

statement in resumable session 'User ORDER_USER(40), Session 7,
Instance 1' was suspended due to

ORA-01653: unable to extend table ORDER_USER.ORDER_SUMMARY
by 16 in tablespace ORDER_TBS

Sample Alert.log Entries:

Mon May 13 14:39:26 2002
statement in resumable session 'User APP_DEVELOPER(29), Session 7,
Instance 1' was suspended due to

ORA-01536: space quota exceeded for tablespace 'CUSTOMER_TBS'
…
Mon May 13 14:46:42 2002
statement in resumable session 'User APP_DEVELOPER(29), Session 7,
Instance 1' was resumed
…
Tue May 14 15:08:53 2002
statement in resumable session 'User ORDER_USER(38), Session 7, Instance
1' was suspended due to

ORA-01653: unable to extend table ORDER_USER.ORDER_SUMMARY by 16 in
tablespace ORDER_TBS
…
Tue May 14 17:08:53 2002
statement in resumable session 'User ORDER_USER(38), Session 7, Instance
1' was timed out

Resumable Space ManagementResumable Space Management 7.7.88

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

7.7.88

SummarySummary
RSM suspends failing transactions

Permits correction and resume operation
Enable

ALTER SESSION ENABLE …
Also see DBMS_RESUMABLE supplied package

Monitoring
DBA_RESUMABLE, Alert Log

Consider Triggers
LOGON to Enable
AFTER SUSPEND to log and alert DBA

Utility support
SQL*Loader and Import

Resumable Space Management (RSM) can save a lot of time when dealing with
long running transactions that fail due to a storage allocation error. With RSM, a
transaction can be suspended giving you time to correct the problem, at which time
the transaction resumes.

Before using RSM, a session must be enabled for it by executing either the ALTER
SESSION command or the DBMS_RESUMABLE package.

DBA’s can use DBA_RESUMABLE to monitor for suspended transactions.

Triggers can be used to help automate RSM. For example, a LOGON trigger could
be used to enable RSM for specific sessions. The new AFTER SUSPEND trigger
can be used to log and possibly alert the DBA to the existence of a suspended
transaction.

Both SQL*Loader and import have been enhanced to support RSM.

9i Tuning Enhancements for Developers9i Tuning Enhancements for Developers 8.8.11

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.
SKILLBUILDERS

8. Tuning Enhancements 8. Tuning Enhancements
for Developersfor Developers

V$SQL_PLAN Stats
Dynamic Sampling

Cursor Sharing Enhancement
Forced Rewrite
Parallel DML

New Hints

9i Tuning Enhancements for Developers9i Tuning Enhancements for Developers 8.8.22

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

8.8.22

Runtime Plan & StatisticsRuntime Plan & Statistics
Query V$SQL_PLAN to see run time access
path
Query V$SQL_PLAN_STATISTICS to see
runtime statistics (R2)

The runtime access path of SQL are now saved in case one would want to query
them. This allows one to look at the plan without having to rerun the SQL for this
purpose. The V$SQL_PLAN table holds the access plans.

9i Tuning Enhancements for Developers9i Tuning Enhancements for Developers 8.8.33

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

8.8.33

VSQL_PLANVSQL_PLAN

Use V$SQL_PLAN view to see cached plan
Stores the actual execution plan information
Has similar columns to the PLAN_TABLE

SQL> SELECT operation, options, object_name
2 FROM v$sql_plan
3 WHERE address = '79DCCF68'
4 AND hash_value = 2966840198;

OPERATION OPTIONS OBJECT_NAME
-------------------- --------------- ------------
SELECT STATEMENT
HASH JOIN
TABLE ACCESS FULL DEPARTMENT
TABLE ACCESS FULL EMPLOYEE

SQL> SELECT operation, options, object_name
2 FROM v$sql_plan
3 WHERE address = '79DCCF68'
4 AND hash_value = 2966840198;

OPERATION OPTIONS OBJECT_NAME
-------------------- --------------- ------------
SELECT STATEMENT
HASH JOIN
TABLE ACCESS FULL DEPARTMENT
TABLE ACCESS FULL EMPLOYEE

Cached execution plans are similar to the plans generated by the EXPLAIN PLAN
utility. However, cached execution plans are the actual execution plans for
statements that have already run and are stored in the shared pool. Once a
statement ages out of the shared pool, its cached execution plan also ages out.

Let’s assume I ran this query:
select /*davea*/ *

from employee e, department d

where e.dept_no = d.dept_no

To get the ADDRESS and HASH_VALUE, execute:
SELECT sql_text, address, hash_value

FROM v$sql

WHERE sql_text like '%davea%'

9i Tuning Enhancements for Developers9i Tuning Enhancements for Developers 8.8.44

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

8.8.44

Dynamic SamplingDynamic Sampling
Compile time sampling of data to determine
selectivity and volume
Useful when statistics old or non-existent
Useful for queries executed many times or with long
execution time
Recursive SQL issued to read random sample of
data blocks
Set optimizer_dynamic_sampling parameter or
dynamic_sampling hint

0 – no sampling
1 through 10 – Various levels of sampling; 10 most
aggressive

Dynamic sampling is the Oracle9i R2 feature that allows the cost-based optimizer to
sample data blocks at compile time to generate selectivity and cardinality (I.e.
volume or number of rows) statistics. This can lead to better execution plans if the
collected statistics are out of date or non-existent.

Since there is a performance hit at compile time, queries that execute many times
or have a long execution time (in relation to the compile duration) may benefit from
dynamic sampling.

How does it work? Oracle will issue a recursive (Oracle-generated) SQL statement
to read a random sampling of data blocks – at compile time – to collect the
statistics.

Dynamic sampling is controlled by the OPTIMIZER_DYNAMIC_SAMPLING
initialization parameter and the DYNAMIC_SAMPLING hint. Set to 0 to turn of the
feature. Set to 1 through 10 to control the level of sampling.

Supplemental Notes
1 is the default OPTIMIZER_DYNAMIC_SAMPLING. In essence, this causes Oracle
to sample if there is an unanalyzed table in the query.

9i Tuning Enhancements for Developers9i Tuning Enhancements for Developers 8.8.55

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

8.8.55

Cursor Sharing…Cursor Sharing…
CBO automatically rewrite queries to incorporate bind
variables
Convert

To this:

select * from customer
where area_code = '212';

select * from customer
where area_code = '212';

select * from customer
where area_code = :SYS_B_0;

select * from customer
where area_code = :SYS_B_0;

The level of matching between two SQL statements can be controlled with the
CURSOR_SHARING parameter. This parameter was available in Oracle8i but only
with the valid values of EXACT and FORCE. SIMILAR is a new valid value for
CURSOR_SHARING in Oracle9i and later.

If the CURSOR_SHARING parameter has been set to SIMILAR or FORCE then the
SQL statements shown in the slide would be considered the same and would not
have to be reparsed. However, while this can provide better performance in many
cases, it is not always a good thing. For example, what if there are a significantly
higher number of customers is area code 401? The same plan may not be optimal
for both statements.

9i Tuning Enhancements for Developers9i Tuning Enhancements for Developers 8.8.66

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

8.8.66

Cursor Sharing…Cursor Sharing…
Valid values:

EXACT (default)
See previous page

SIMILAR (New with 9i)
Identical in all aspects other than literal values
Execution plan found is considered for use

FORCE

Similar to SIMILAR
Execution plan found is always used

Also see new CURSOR_SHARING_EXACT hint

EXACT forces Oracle to only use existing parsed information in the shared pool if it
exactly matches the statement it is currently being compared to. The rules for what
makes two statements identical are discussed on the previous page.

SIMILAR is new to Oracle9i. It allows Oracle to use information in the shared pool
if two statements only differ in the literal values they use. It still must make a
determination whether or not to use the execution plan found in the shared pool.

FORCE is similar to SIMILAR except that it will always use the execution plan found
in the shared pool for the matching statement.

9i Tuning Enhancements for Developers9i Tuning Enhancements for Developers 8.8.77

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

8.8.77

Forced RewriteForced Rewrite
Force the rewrite of queries to use
materialized views

SQL> alter session set query_rewrite_enabled = force;

Session altered.

SQL> alter session set query_rewrite_enabled = force;

Session altered.

9i Tuning Enhancements for Developers9i Tuning Enhancements for Developers 8.8.88

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

8.8.88

Skip Scanning…Skip Scanning…
Prior to 9i, index usage required leading
column
Skip Scanning allows index w/o leading
column
Requires the use of CBO
See PLAN_TABLE.OPERATION and OPTIONS
OPERATION = INDEX, OPTIONS = SKIP SCAN

Prior to Oracle9i, a predicate in the WHERE clause had to reference the high order
column of the index for the optimizer to choose that index. The new Skip Scanning
feature allows an index to be used even if the predicate does NOT reference the high
order (leading) column. The Cost-Based Optimizer must be used to take advantage of
SKIP SCAN.

Query the OPERATION and OPTIONS columns of the PLAN_TABLE to see if SKIP
SCAN is used:

OPERATION = INDEX, OPTIONS = SKIP SCAN

9i Tuning Enhancements for Developers9i Tuning Enhancements for Developers 8.8.99

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

8.8.99

……Skip ScanningSkip Scanning
Assume the existence of this index:

Query can use SKIP SCAN on index:

create index fullname on customer(lastname, firstname)create index fullname on customer(lastname, firstname)

select *

from customer

where firstname = 'Dave';

select *

from customer

where firstname = 'Dave';

This example illustrates the benefit of the Oracle9i SKIP SCAN index technique. A
query that does not include the leading, high order column of an index can now use
that index to reduce query processing time.

9i Tuning Enhancements for Developers9i Tuning Enhancements for Developers 8.8.1010

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

8.8.1010

Miscellaneous…Miscellaneous…
R2 supports parallel DML on non-partitioned
tables
FIRST_ROWS_n hint

Optimize for specified number of rows
Also see first_rows_n Initialization parameter

CBO peeks at bind variable values on hard
parse

Provides ability to determine selectivity

9i Tuning Enhancements for Developers9i Tuning Enhancements for Developers 8.8.1111

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

8.8.1111

……MiscellaneousMiscellaneous
I/O, memory and CPU costs are now taken
into account when calculating cost by
optimizer
Outline Editing
MONITORING on indexes to determine use
Other new hints

R1: NL_AJ, NL_SJ, FACT, NO_FACT
R2: EXPAND_GSET_TO_UNION

9i Tuning Enhancements for Developers9i Tuning Enhancements for Developers 8.8.1212

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

8.8.1212

Going AwayGoing Away
9.2.x.x.x will be the last release to support
rule-based optimization
Oracle Trace is deprecated

Use STATSPACK

9i Tuning Enhancements for Developers9i Tuning Enhancements for Developers 8.8.1313

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

8.8.1313

SummarySummary
v$sql_plan and
v$sql_plan_statistics provide window
to actual plan and stats
Dynamic sampling overcomes old or non-
existent stats
Cursor sharing can help reduce parsing
Forced rewrite can help take advantage of
materialized views
Parallel DML and more…

9i Security for Developers9i Security for Developers 9.9.11

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.
SKILLBUILDERS

9. Security for Developers9. Security for Developers

Fine Grained Access Control
n-Tier Proxy Authentication

Label Security
Data Encryption

9i Security for Developers9i Security for Developers 9.9.22

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

9.9.22

8i FGAC Review…8i FGAC Review…
8i gave us Fine Grained Access Control, AKA

Virtual Private Database
Row Level Security
DBMS_RLS

Security logic embedded in database
Ability to tack on a WHERE clause at run-time

Sort of a “dynamic view”

Oracle8i provided a security feature called Fine Grained Access Control (FGAC).
This feature is also sometimes called Virtual Private Database, row level security
and DBMS_RLS (the supplied package that implements the feature).

FGAC allows us to put simple or complex security logic in the database, as opposed
to the client or application server. The basic functionality of FGAC is to, based on
the circumstances that your logic determines, add a WHERE clause to the query
(SELECT, UPDATE, INSERT and DELETE are all supported) being executed,
thereby restricting the user to a set of rows.

FGAC can reduce the number of views needed in your database if you tend to
create different views for different users. You may also be creating different stored
procedures and/or triggers for different user groups. So you may be able to reduce
the amount of procedural objects you have to maintain as well.

Some environments reduce the complexity of managing security by allowing shared
user accounts, e.g. a group of employees all log in with the same username. FGAC
reduces (maybe eliminates) the need for this by significantly reducing the
complexity of administering security.

9i Security for Developers9i Security for Developers 9.9.33

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

9.9.33

……8i FGAC Review8i FGAC Review
Application contexts provide additional
intelligence to the security policy

Variables set at logon give session context
Security logic checks context

Applies WHERE clause based on context

FGAC can reduce:
Number of views needed
Code maintenance
The need for shared user accounts

A key component of FGAC is “application context”. An application context is simply
a database object (create with CREATE CONTEXT) that has a PL/SQL package
bound to it. The procedures in the package can assign values to any number of
variables associated with the context. This is typically done at login time via a
LOGON trigger. Later in the life of the session, when a query is made against a table
that has a security policy tied to it, the security policy (PL/SQL routine) checks the
context variable values and makes decisions based on those values.

For example, the application context may set a variable that informs the security
policy that the user is a manager, and is entitled to see all data, or the user is not a
manager, and is only entitled to see data related to his or her employment.

9i Security for Developers9i Security for Developers 9.9.44

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

9.9.44

9i FGAC Enhancements9i FGAC Enhancements
FGAC / VPD enhancements

Oracle Policy Manager
GUI tool to manage FGAC

Global Application Context
Application context persists across sessions
Useful for Web app support, where each page is new
session

Partitioned Fine Grained Access Control
FGAC by application, instead of just user

Oracle9i Release 1 supplied several enhancements to FGAC. These include:

Oracle Policy Manager. This is a graphical tool that can be used to simplify FGAC
management. It is part of the Oracle Enterprise Manager (OEM) tool.

Global Application Context. This extends the functionality of application context to
persist across sessions. This is particularly helpful in Web applications where a
session may terminate and restart by visiting different Web pages.

Partitioned Fine Grained Access Control. This extends FGAC to allow different
applications to have different security policies – even on the same object. Tom Kyte
(asktom.oracle.com) describes it this way: “Partitioned fine grained access control
is the ability to have FGAC by application.”

9i Security for Developers9i Security for Developers 9.9.55

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

9.9.55

nn--Tier Proxy AuthenticationTier Proxy Authentication
“Application Server logs in as itself, but on behalf of
another user” (1)

Support for auditing, FGAC
Enhancements

Java JDBC support
Identification through X.509 certificates or Distinguished
Names (DN)
More…

ALTER USER application_Server_userid GRANT
CONNECT THROUGH proxy_user WITH roles;

ALTER USER application_Server_userid GRANT
CONNECT THROUGH proxy_user WITH roles;

n-Tier proxy authentication allows a middle-tier server logon on behalf of another
user, using its own logon credentials. It is accomplished in large part with this new
form of the ALTER USER command:
ALTER USER application_Server_userid GRANT CONNECT THROUGH proxy_user WITH
roles;

Proxy authentication allows the server to apply FGAC security policies and auditing
to the proxy account, and accurately report who caused the activity. This feature
was introduced with Oracle8i. With Oracle9i, Oracle has added support for Java
(formerly, only C or C++ using OCI could make use of the feature). Support for
X.509 certificates and Distinguished Names has also been added.

Resources:
(1) Tom Kyte, asktom.oracle.com
Oracle Advanced Security Administrators Guide

9i Security for Developers9i Security for Developers 9.9.66

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

9.9.66

Other 9i Security FeaturesOther 9i Security Features
Label Security

VPD without programming
Control with Oracle Policy Manager

Fine grained auditing
Conditional auditing of SELECT statements

Data encryption enhancements
FIPS-140 certified random number generator

See the DBMS_OBFUSCATION_TOOLKIT package

Oracle9i introduces Label Security, an out-of-the-box FGAC solution. i.e. It takes
the programming out of fine grained access control and virtual private database.
The Oracle Policy Manager, part of Oracle Enterprise Manager, is a graphical tool
for controlling and managing Label Security.

Fine Grained auditing (FGA) is a new feature in Oracle9i that allows you to
conditionally audit SELECT statements. We’ll discuss this feature in greater detail
later in this module.

Release 1 also raised the bar on the data encryption capabilities available with the
DBMS_OBFUSCATION_TOOLKIT supplied package by supplying a better, FIPS-140
certified, random number generator for encryption keys. (FIPS is a Federal
Information Processing Standard, a US government security standard.)

9i Security for Developers9i Security for Developers 9.9.77

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

9.9.77

Security SummarySecurity Summary
Fine Grained Access Control

GUI tool
Partitioned Application Contexts

n-Tier Proxy Authentication
Java Support

Label Security
VPD in a box

Data Encryption
FIPS certified Random Key generator

Oracle9i Index EnhancementsOracle9i Index Enhancements 10.10.11

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.
SKILLBUILDERS

10. Index Enhancements 10. Index Enhancements
for Developersfor Developers

IOTs and bitmap indexes
Bitmap Join Indexes

Oracle9i Index EnhancementsOracle9i Index Enhancements 10.10.22

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

10.10.22

Bitmap Join IndexesBitmap Join Indexes
Reduces amount of data to be joined during
query

Conceptually adding column from DEPT to
EMP

create bitmap index emp_dept_bidx on emp(d.dname)
from emp e, dept d
where e.deptno = d.deptno;

select count(*)
from emp, dept
where emp.deptno = dept.deptno
and dept.dname = 'SALES'

create bitmap index emp_dept_bidx on emp(d.dname)
from emp e, dept d
where e.deptno = d.deptno;

select count(*)
from emp, dept
where emp.deptno = dept.deptno
and dept.dname = 'SALES'

The bitmap join index pre-computes the join and stores the result in a bitmap. In
our example, the bitmap index will contain all the dept.dname values and a bitmap
that maps to the rowids in the dept table.

Oracle9i Index EnhancementsOracle9i Index Enhancements 10.10.33

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

10.10.33

IOTsIOTs and Bitmap Indexes…and Bitmap Indexes…
IOTs now support bitmap indexes
Requires the use of a mapping table

Use MAPPING TABLE clause on CREATE TABLE
Mapping Table facts:

Associates a bit from the bitmap index to the
ROWID from the IOT
Stored in same tablespace as parent IOT
Mapping table name controlled by Oracle

E.g. SYS_IOT_MAP_30526

Indexes allowed on IOTs may now be bitmap indexes as well as B-tree indexes. This
requires the use of a “mapping table.” The mapping table associates a bit from the
bitmap index to the ROWID from the IOT.

The name of the mapping table is generated by Oracle. The mapping table is placed
in the same tablespace as the IOT.

Oracle9i Index EnhancementsOracle9i Index Enhancements 10.10.44

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

10.10.44

……IOTsIOTs and Bitmap Indexesand Bitmap Indexes
create table phones

(area_code number
,exchange number
,last_four number
,constraint phone_pk

primary key(area_code, exchange, last_four))
organization index
mapping table tablespace main_ts;

create bitmap index phone_bitmap on
phones(last_four);

create table phones
(area_code number
,exchange number
,last_four number
,constraint phone_pk

primary key(area_code, exchange, last_four))
organization index
mapping table tablespace main_ts;

create bitmap index phone_bitmap on
phones(last_four);

A mapping table can also be added to an existing IOT:
SQL> ALTER TABLE countries MOVE MAPPING TABLE TABLESPACE ts_data1;

Table altered.

Yes, you code “MOVE” not “ADD”, when adding a mapping table to an existing IOT!

You can see the effect of the MAPPING TABLE clause with this query:
LOCAL> select table_name , iot_type

2 from user_tables

3 where iot_type is not null

4 /

TABLE_NAME IOT_TYPE

------------------------------ ------------

PHONES IOT

SYS_IOT_MAP_30526 IOT_MAPPING

Oracle9i Index EnhancementsOracle9i Index Enhancements 10.10.55

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

10.10.55

SummarySummary
Bitmap join indexes can reduce / eliminate
join processing

Especially good for Data Warehouse environments
IOTs now support bitmap indexes

Oracle9i Index EnhancementsOracle9i Index Enhancements 10.10.66

© 2003 SkillBuilders, Inc.© 2003 SkillBuilders, Inc. V 1.1V 1.1

© 2003 SkillBuilders, Inc.

10.10.66

Presentation SummaryPresentation Summary
Questions???

Thanks for Listening!

	0. Welcome
	1. Deprecated Features for Developers
	2. Flashback Query
	3. External tables
	4. New SQL Features
	5. New PL/SQL Features
	6. New DataTypes
	7. RSM
	8. Tuning Enhancements for Developers
	9. Security for Developers
	10. Index Enhancements for Developers

