Oracle Spatial Technology: Enabling Location Analysis in Oracle

Ravikanth V Kothuri
Siva Ravada and Xavier Lopez
Oracle Corporation
Overview

- Introduction
- Oracle Spatial: An Overview
- New Features in 10g
- Oracle Spatial in Action
What is Spatial Data?

GIS (mapping) data
CAD data
CAM data
Address data

1 WTC, New York: Geocode to obtain Spatial location

In General

85% of Customer Data has a Spatial component e.g. zipcode, City, state
Integrating Spatial & eBusiness

Location adds significant value providing graphical view of supply chain, assets, customers, suppliers.
How to Manage Spatial Data: Early Spatial Systems - Hybrids

- Attributes in database
- Geometries in database - but in proprietary binary format
- IT can access geometries via proprietary interfaces only
- Poor integration
Open Spatial Databases: Oracle Spatial

- Spatial is native DBMS type
- Attributes and geometries integrated in database
- Supported by all GIS
- Supported by eBusiness applications
- Spatial data queried using SQL, Java
Oracle Stack is Spatially Enabled

- 3rd party GIS Tools
- Mobile & Wireless
- ERP Applications
- CRM Applications
- Business Intelligence
- XML Database
- JDeveloper Tools
- Design Tools
ORACLE 10g DATABASE

A Spatially-enabled Database
Oracle Spatial: Overview

Spatial Data Analysis, Mapviewer

Spatial Data Types

All Spatial Data Stored in the Database

Oracle10g Spatial

Spatial Access Through SQL

Spatial Indexing

Fast Access to Spatial Data
Storing Spatial Data in Oracle

Roads Table

<table>
<thead>
<tr>
<th>ROAD_ID</th>
<th>NAME</th>
<th>SURFACE</th>
<th>LANES</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pine Cir.</td>
<td>Asphalt</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2nd St.</td>
<td>Asphalt</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3rd St.</td>
<td>Asphalt</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Example

```
SQL> CREATE TABLE roads (  
  2    name       VARCHAR2(30),  
  3    surface    VARCHAR2(30),  
  4    lanes      NUMBER,  
  5    location   MDSYS.SDO_GEOMETRY);
```

```
SQL> CREATE TABLE hospitals (  
  2    name       VARCHAR2(30),  
  3    location   MDSYS.SDO_GEOMETRY);
```
SDO_GEOMETRY Type

<table>
<thead>
<tr>
<th>SDO_TYPE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDO_GTYPE</td>
<td>Type of geometry</td>
</tr>
<tr>
<td>SDO_SRID</td>
<td>Coordinate System for Data</td>
</tr>
<tr>
<td>SDO_POINT</td>
<td>Type of Point</td>
</tr>
<tr>
<td>SDO_ELEM_INFO</td>
<td>Type of Element</td>
</tr>
<tr>
<td>SDO_ORDINATES</td>
<td>Type of Ordinate</td>
</tr>
</tbody>
</table>

- **SDO_GTYPE**: Type of geometry
 - Point (2001), Line (2002), Polygon (2003), Collection (2004), ...

- **SDO_SRID**: Coordinate System for Data
 - Geodetic, Projected, or Non-Earth
SDO_GEOMETRY Type

- **SDO_POINT of type**

 SDO_POINT_TYPE:

 - Attributes: X, Y, Z: Number

 - Specifies a point geometry

- **SDO_ELEM_INFO, SDO_ORDINATES:**

 Varray of Numbers

 - Varray of NUMBERs

 - Specify a **non-point** geometry

- **SDO_ORDINATES:** stores ordinates

- **SDO_ELEM_INFO:** interpret ordinates
Insertion in Spatial Tables

```sql
SQL> INSERT INTO hospitals values('St. John Hospital', SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(-78, 37, NULL), NULL, NULL));
```

Data type: Geographic coordinates
Queries on Location in 10g

Find hospitals within 2-miles of World Trade Center

<table>
<thead>
<tr>
<th>SQL> SELECT P.Name, P.Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM Hospitals P,</td>
</tr>
<tr>
<td>Address_Master A</td>
</tr>
<tr>
<td>WHERE</td>
</tr>
<tr>
<td>A.St_Address=‘1 World Trade Center’</td>
</tr>
<tr>
<td>and A.City = ‘New York’</td>
</tr>
<tr>
<td>AND MDSYS.SDO_WITHIN_DISTANCE(</td>
</tr>
<tr>
<td>A.Location, P.Location,</td>
</tr>
<tr>
<td>‘distance=2’) = ‘TRUE’;</td>
</tr>
</tbody>
</table>
Indexes on Spatial Tables

SQL> CREATE INDEX hosp_sidx on hospitals(location) indextype is mdsys.spatial_index;

- Spatial index is Oracle’s R-tree
- Implemented using Oracle Extensibility
- Parallel Index Creation: Performance
- Partitioned Indexes on Partitioned Tables
 - Manageability, Scalability, Performance
- Supports a variety of spatial queries (operators)
Spatial Query Operators

- **SDO_WITHIN_DISTANCE:**
- **SDO_NN:** Nearest neighbor
 - Find nearest hospital to World Trade Center

```
SQL> SELECT P.Name, P.Address
2> FROM Hospitals P,
3> Address_Master A
4> WHERE
5> A.St_Address='1 World Trade Center'
6> AND A.City = 'New York'
7> AND MDSYS.SDO_NN(
8>     A.Location, P.Location)
9>     = 'TRUE' and rownum<=1;
```
Spatial Query Operators (contd.)

- **SDO_RELATE**: Find table rows (A) that interact with query geometry (B)

- **Interactions:**
 - Contains
 - Inside
 - OverlapBdyIntersect
 - Covers
 - Coveredby
 - OverlapBdyDisjoint
 - Touch
 - Equal
 - Disjoint
 - A red
 - B green
Spatial Analysis Functions (non-index based)

- Metric Functions
 - AREA, LENGTH, DISTANCE
 - E.g., select sdo_area(geom) from dual;

- Set Functions
 - Union, Intersection, Difference, XOR

- Analysis Functions
 - Buffer, Centroid, Convex Hull

- Aggregate Functions
 - Similar to SQL aggregates (sum, avg, etc)
 - aggregate unions, centroid, etc.
Oracle10g Location Features

Locator
- Points, lines, polys
- 2D, 3D, 4D data
- Spatial Operators
 - Within-distance
 - Spatial Relations
- Coordinate Systems
- Long Transactions
- Table Partitioning*
- Object Replication*
- Oracle10g Standard & Enterprise

Spatial
- All Locator features
- Linear Referencing
- Spatial Aggregates
- Coordinate Transforms
- Network Data Model
- Topology Data Model
- GeoRaster
- Geocoder
- Spatial Analytic Functions

* Available on Enterprise Edition Only
Location-enabling Oracle Stack

Web Services
- SOAP
- WSDL

Data Server
- Spatial
- Locator
- Oracle9i

Application Server
- Location Base Service Components
- TCA schema
- Field Service
- e-Business Suite

CRM & ERP Applications
- CRM & ERP Applications

Any device
- Oracle Location Technology
- Oracle core technologies
Oracle ApplicationServer 10g MapViewer

- Standard component of Oracle ApplicationServer 10g
- 100% J2EE compliant Mapping engine
- Tightly integrated with Oracle Locator and Oracle Spatial
- Provides an XML API for defining and deploying maps via the web
- Renders data from Oracle8i R3 and beyond
MapViewer: Map

- Renders data stored using Oracle’s native spatial data type (SDO_GEOMETRY)
- Maps are defined as a collection of themes
- Maps may contain a title, legend and footnote
- Theme styles can be based on attribute values (thematic maps)
- GIF, BMP and PNG image formats
MapViewer Architecture

DATABASE 9i

IAS 9i

MapViewer

JDBC

XML: MapRequest

HTTP

XML: MapResponse
New Features in Oracle Spatial 10g

- Network Data Model
- Topology Data Model
- GeoRaster
- Geocoder
- Spatial Analytic Functions
10g: Network Data Model

- **Network Data Model**
 - A data model to store network (graph) structure in the database
 - Explicitly stores and maintains connectivity of the network
 - Attributes at link and node level

- **Routing Engine**
 - Street navigation for single or multiple destinations
 - Provide network analysis functionality in the database

- **Supports network solutions (Tracing & Routing)**
 - Transportation and Transit Solutions
 - Field Service, Logistics
 - Location based Services and Telematics
10g: Topology Data Model

• New data model to store persistent topology
 - Easier to do data consistency checks in this model
 - Example: when the road moves, the property boundary automatically moves with it

• Topology Data Model and Schema
 - Describes how different spatial features are related to each other
 - A land parcel shares the boundary with a road

• 10g continues to support transient topology
 - Topology computed on demand
10g: GeoRaster

- **What is GeoRaster**
 - A new data type to store raster data
 - Satellite images, remote sensing data
 - An XML schema to store Metadata
 - Data source, layer information
 - Geo Referencing information
 - How to relate a pixel in the image to a longitude/latitude on Earth’s surface

- **Functionality**
 - Open, general purpose raster data model
 - Storage and indexing of raster data
 - No size limit for each raster object
 - Querying and analyzing raster data
 - Delivering GeoRaster to external consumers

- Publish as JPEG, GIFF images
10g Geocoder

- Generates latitude/longitude (points) from address
- International addressing standardization
- Formatted and unformatted addresses
- Tolerance parameters support fuzzy matching
- Record-level and batch processes
- Data provided by leading data vendors
10g: Spatial Analytic Functions

- Discovery based on Spatial Patterns
 - Explicitly materialize spatial relationships

- Usage
 - Insurance risk analysis, crime analysis
 - Demographic analysis, customer profiling
 - Epidemiology, Facility placement
 - Insurance Risk analysis:
 - cluster house-holds based on high risk neighborhoods
 - Identify business prospects across a region:
 - examine the average incomes across different regions of the space
Complying to Open Standards

- OGC (GML, OpenLS)
- ISO TC211
- W3C Consortium (XML/Web Services)
- J2EE
The Dominant Spatial Database

- **National Mapping, Cadasters & Hydrographic Agencies**
 - NIMA, USGS, US Army, Ordnance Survey (UK, IR, NI), Denmark, Sweden, The Netherlands, Poland, Australia

- **Transportation Management**
 - California, Iowa, Florida, Maine, Maryland, Minnesota, New York, Oklahoma, Pennsylvania, Alabama, Alberta, London Rail, Netherlands Transport, Australia, Austrian Rail, German Rail

- **Telco & Wireless LBS**
 - AT&T, Bell South, Cingular, DoCoMo, KDDI, Intrado, JPhone, Nextel, Sprint, T-Mobile, Telkom, Telenor, Telstra, Telus, Telia, Cellcom, Verizon, VIAG, Vodafone, Wind

- **Utilities**

- **Local Authorities**
 - New York City, Chicago, Los Angeles, San Jose, San Mateo, Washington DC, Cleveland, Detroit, Phoenix, Winnipeg, Vancouver, Edmonton, Stockholm...
Oracle Spatial in Action
Ordnance Survey, UK

- Captures data: Surveying
- Migrates (partially) from Complex Systems to Oracle (and Spatial) to manage Spatial Data

Maia (maintenance)

Mercury (publication)

Oracle 10G Spatial
OS Summary

- 450M features, 1TB Data
- Robustness, reliability, scalability, availability
- Expect financial and strategic gains from the move to Commercial Off-The-Shelf software (Oracle and ESRI)
New York City

- Department of Information Technology & Telecommunications
 - Developed standardized digital basemap for all agencies
 - 6,000 miles of underground pipes
 - 1 million water/sewer connections
 - 32,000 sq. miles of Infrastructure Data
 - 7,500 digital photographs
- The Office of Emergency Management created a public site for emergency preparedness
 - Extensively Used To Support
The consolidated spatial data warehouse was the foundation for NYC’s response to the recent tragedies:
- First responder deployment
- Critical infrastructure management
- Road closures
- Evacuation areas
- Damage assessment

The Office of Emergency Management created a public site for emergency preparedness:
- Hurricane flood risks and evacuation routes
- Heat Advisory “cool down locator” (pools, senior centers, community centers)

Department of Health uses the system to track instances of West Nile Virus.
City of Edmonton

- Integrated, central repository for spatial and relational data
 - Replaced 49 disparate land apps & 166 databases
 - Citywide sharing of standardized data
- Data feeds: land registry and surveys, utilities and phone co., tax assessments, Dept. of Public Works
- Users: engineers, planners, cartographers, city officials and departments, mortgage lenders, citizens
Oracle Spatial Technology: Summary

• An open repository for Geospatial data
• Integrate location & Business data in RDBMS
• Industry standard for Spatial data in RDBMS
• Robustness, reliability, scalability, availability
 - Support Terabytes of Data, 1000s of Users
• Security and Reliability
• Short & Long Transaction Management
What the Analysts are Saying about Oracle Spatial...

“In repeated surveys, IDC has found that Oracle is used in an 80%-90% share of Spatial Information Management oriented database installations.”

IDC, December 2002