
Oracle10G
New Features in PL/SQL

Oracle Corporation
Marc Sewtz , Michael Hichwa

Thu., December 11th 2003

Agenda

PL/SQL Performance Improvements
PL/SQL New Features
PL/SQL Programming Tips and Best Practices
Using PL/SQL

Improved Performance

Oracle Database 10g brings a new PL/SQL compiler and a
newly tuned PL/SQL execution environment.

PL/SQL programs will execute twice as fast as before.

Performance results come from three distinct sources:
– Tests done at Oracle HQ using a test suite, which is downloadable for customers to

use from the OTN site (http://otn.oracle.com/tech/pl_sql/htdocs/New_In_10gR1.htm).
– Customer tests conducted during the 10g Beta Program by the Oracle Partner IFS.
– Tests using the benchmark suite developed and owned by the Applications

Development Team at Oracle HQ.

Improved Performance

PL/SQL Compiler font-end

Compiler font-end analyzes the source code for a single
PL/SQL compilation unit, checking it for syntactical and
semantic correctness.

Output of the front-end is either an internal representation,
which exactly captures the source code’s semantics, or an
error report.

Improved Performance

PL/SQL Compiler back-end

Compiler back-end generates an executable
representation of the program in the machine code of the
target machine.

Before 9iR1, the output was always code for the PL/SQL
Virtual Machine.

9iR1 introduced the option (via native compilation) to
output code for the hardware of the underlying computer.

Improved Performance

PL/SQL Compiler back-end

The back-end can generate its output code in two different
representations:

– In the interpreted mode, it simply stores the machine code in
system-managed structures in the SYS schema.

– In the native mode, it translates the machine code into C source
code with the same semantics.

Improved Performance

What changes were made in 10g?

Front-end support for new language features:

– The binary_float and binary_double data types (IEEE data types)
– The regexp_like, regexp_instr, regexp_substr and regexp_replace

built-ins to support regular expression manipulation with standard
POSIX syntax

– Multiset operations on nested table instances supporting
operations like equals, union, intersect, except, member

– User-defined quote character
– INDICES OF and VALUES OF syntax for FORALL

Improved Performance

What changes were made in 10g?

Brand new machine code generator using state-of-the-art
optimizing technology

The new code generator has existed side-by-side with the
old one in the ORACLE executable for quite some time
and a switch has allowed choosing between the one or the
other.

Improved Performance

What changes were made in 10g?

Substantial PVM upgrade

– Obsolete instructions have been removed, and new ones have
been added.

– The system for consuming the instructions has been streamlined.
– The C routines that implement the instructions have been tuned.

Improved Performance

What changes were made in 10g?

Changes in the regime for native compilation

– Pre 10g, the DLL generated by the back-end was stored as a file
on an operating system directory.

– In 10g, the DLL is stored in the database and is cached as a file
on an operating system directory only on demand.

– The configuration steps that the DBA follows to set up for native
PL/SQL compilation have been radically simplified.

– The dependency on the platform’s make utility has been removed.
– The subsystem that derives the C code from the machine code

has been reworked to generate more efficient C.

Improved Performance

Performance results

Baseline_80 shows the subset of programs that run in 80 and later under the
conditions 80, 8i, 9iR2 native and 10g native, optimize level 2. (Full results for all
the available compilation conditions are included with the download kit.) Here the
improvement factor is calculated with respect to 80.

Baseline_9iR2 shows the larger subset of programs that run in 9iR2 and later
under the conditions 9iR2 interpreted, 9iR2 native and 10g native, optimize level
2. Here the improvement factor is calculated with respect to 9iR2 interpreted.

Baseline_10g shows all programs under the conditions 10g interpreted, optimize
level 1, 10g interpreted, optimize level 2, 10g native, optimize level 1 and 10g
native, optimize level 2. Here the improvement factor is calculated with respect to
10g interpreted level.

Improved Performance

Performance results

baseline_80 80 8i 9iR2 Nat 10g Nat L2
 Min 1.00 0.94 1.54 1.64
 1st quartile 1.00 1.08 1.85 2.94
 Median 1.00 1.13 2.27 3.94
 3rd quartile 1.00 1.40 2.63 5.36
 Max 1.00 2.07 3.33 10.57

Improved Performance

Performance results

baseline_9iR2 9iR2 Int 9iR2 Nat 10g Nat L2
 Min 1.00 1.12 1.19
 1st quartile 1.00 1.36 2.13
 Median 1.00 1.50 2.64
 3rd quartile 1.00 1.61 3.66
 Max 1.00 2.88 7.57

Improved Performance

Performance results

baseline_10g 10g I L1 10g I L2 10g N L1 10g N L2
 Min 1.00 1.00 1.05 1.05
 1st quartile 1.00 1.03 1.17 1.26
 Median 1.00 1.09 1.35 1.41
 3rd quartile 1.00 1.13 1.49 1.67
 Max 1.00 1.38 2.32 2.42

Regular Expressions

You can use UNIX-style regular expressions while
performing queries and string manipulations.
Use the REGEXP_LIKE operator in SQL queries.
Use the REGEXP_INSTR, REGEXP_REPLACE, and
REGEXP_SUBSTR functions anywhere you would use
INSTR, REPLACE, and SUBSTR.

FORALL Support for Non-Consecutive Indexes

FORALL lets you run multiple DML statements very
efficiently
It can only repeat a single DML statement, unlike a
general-purpose FOR loop.
Use the INDICES OF and VALUES OF clauses with the
FORALL statement to iterate over non-consecutive index
values.
For example, you can delete elements from a collection,
and still use that collection in a FORALL statement.

Using FORALL with Part of a Collection

The bounds of the FORALL loop can apply to part of a
collection, not necessarily all the elements:

DECLARE
 TYPE NumList IS VARRAY(10) OF NUMBER;

 depts NumList :=
 NumList(20,30,50,55,57,60,70,75,90,92);
BEGIN

 FORALL j IN 4..7 -- use only part of varray
 UPDATE emp SET sal = sal * 1.10
 WHERE deptno = depts(j);

END;

Quoting Mechanism for String Literals

Instead of doubling each single quote inside a string literal,
specify your own delimiter character for the literal, and
then use single quotes inside the string:

string_var := 'I''m a string, you''re a string.';

string_var := q'!I'm a string, you're a string.!';

Implicit Conversion Between CLOB and NCLOB

Implicit conversion from CLOB to NCLOB or from NCLOB
to CLOB.
Because this can be an expensive operation, it might help
maintainability to continue using the TO_CLOB and
TO_NCLOB functions.

New IEEE Floating-Point Types

New data types BINARY_FLOAT and BINARY_DOUBLE
represent floating-point numbers in IEEE 754 format.
Because many computer systems support IEEE 754
floating-point operations through native processor
instructions, these types are efficient for intensive
computations involving floating-point data.

Improved Overloading

You can now overload subprograms that accept different
kinds of numeric arguments, to write math libraries with
specialized versions of each subprogram for different data
types.

Nested Table Enhancements

Nested tables defined in PL/SQL have many more
operations than previously.
Compare nested tables for equality.
Test whether an element is a member of a nested table.
Test whether one nested table is a subset of another.
Perform set operations such as union and intersection.

PL/SQL Programming Tips and Best Practices

Keep the code simple and readable
Use cursor FOR loops
Avoid “select into …” statements
Use bulk binds and bulk collect into
Use associative arrays
Always use PL/SQL packages
Use cursor variables
Use inline views

Using PL/SQL

Data Manipulation
Dynamic Web Applications
HTML DB

