Experience the GRID Today

Shig Hiura Pre-Sales Engineer Shig_Hiura@etagon.com

Confidential Material

Agenda

- Introduction
 - What is the Grid
 - The Database Grid
- Oracle9i RAC Technology
- 10g vs. 9*i*R2 Comparison
- Benefits of RAC on Linux
- Summary

The best thing about the Grid is that it is unstoppable.

The Economist, June 21, 2001

Key IT Imperatives

- Highest Quality of Service
 - Maximum Availability
 - Maximum Scalability
- Most Efficient Management
 - Do much more ...
- Lowest Cost
 - ... with much less

Grid Vision

- Computing as a utility
 - A network of clients and service providers
- Client-side: Simplicity
 - Request computation or information and receive it
- Server-side: Sophistication
 - Availability, reliability, security
 - Capacity on demand, load balancing
- Virtualization
 - Storage
 - Networks
 - Computing Resources

Benefits of the Grid

- Better information faster
 - Perform more work with fewer resources
 - Spread work across resources
 - Access to resources on demand
- Faster response to changing business priorities
 - Instantly and dynamically realign IT resources as business needs change
- Reduced IT costs
 - Improve utilization of existing resources
 - Utilize less expensive commodity platforms

Reducing IT Costs

Large Dedicated Server

Oracle Grid Computing

- Expensive components
- High incremental costs
- Configured for peak
- Single point of failure
- Enterprise service at high cost

- Low cost modular components
- Low incremental costs
- Capacity on demand
- Fault tolerant
- Enterprise service at low cost

Technology Trends

- Blades: Every vendor offering them
 - Huge cost advantages
 - Software vendors have to enable usage
 - IBM BladeCenter, HP Proliant BL-Series, etc.
- Linux: Fastest growing OS
 - Commodity OS
 - Ready for blades today
 - Linux and blades naturally complement each other
- NAS, SAN, and Infiniband provide storage access from any blade

Grid Computing Eliminates Islands of Computation

IT Problem

Separate servers

High h/w & s/w costs

Configured for peak

Single point of failure

Rigid

Difficult to manage

Grid Solution

Shared servers

Low cost components

Capacity on demand

Fault tolerant

Flexible

Unified management

Coordinated use of many small servers acting as one large computer.

Why Clustering? Scalability Alternatives

Scale-up

Clusters Reduce Costs

Hardware Cost Comparison

*Source OEM Website - Mid Range SMP vs Clustered hardware

Oracle9i RAC Distributions

Oracle9i RAC Distributions

Oracle9i RAC HA

	Failover Operation	RAC	'Cold'
-	Reconfigure Group Membership	15 sec	0 sec
	Reconfigure Distributed Locks	5 sec	0 sec
	Failover Disk Volumes	0 sec	Up to 20 min
	Restart Oracle	0 sec	Up to 5 min
	Recover Oracle	20 sec	20 sec
	Warm Buffer Cache	0 sec	5 + min
-	Total Failover Time	< 60 sec*	> 30 min

* Oracle RAC 10g failover time < 8 sec

Oracle9i Cluster Stack vs. Oracle 10g

Applications

Cluster Control & Failover APIs Resource Manager & Agents

Volume Manager / File system

Messaging / Locking / etc.

Membership

Connectivity

Hardware/OS Kernel

Applications

RAC, Other Apps
Services Framework
Cluster Control/Recovery APIs
Automatic Storage Management
Messaging and Locking
Membership
Connectivity

Hardware/OS Kernel

10g moving to an Integrated clusterware

9i RAC
Linux Solaris

10g RAC Linux Solaris

Automatic Storage Management (ASM)

- Eliminates need for conventional file system and volume manager
- Capacity on demand
 - Add/drop disks online
- Automatic I/O load balancing
 - Stripes data across disks to balance load
 - Best I/O throughput
- Automatic mirroring
- Virtualizes the storage resources

ASM - How it Works

- No volumes: just a pool of storage.
- Partitions total disk space into uniform 1 megabyte extents.
- Online add/remove of diskwith automatic load balancing.

ASM Architecture

The Operational Stack

TODAY

ASM

RAC 10g and ASM Synergy

- Simplified Cluster Environment
- Easier Management
- Higher Availability
- Smoother Growth
- Adaptable Resources

- Hands-free allocation and re-allocation of servers to workloads (services) based on rules
 - Automated routing of service requests to appropriate server with lowest load
 - On server failure, automated re-allocation of surviving servers to services

Normal Server Allocation

Order Entry Supply Chain HR Financials

End of Quarter

Normal Server Allocation

Server Fails

Order Entry Supply Chain

HR Financials

Reallocate HR server to Order Entry

Order Entry Supply Chain

HR Financials

Order Entry on Two Servers

RAC 10g - Services

- Policy based behavior
 - Performance
 - Availablility
- Uses Automatic Workload Repository Statistics
- Created and managed with existing tools
 - OEM
 - DBCA
 - SRVCTL

Database | Setup | Preferences | Help | Logout

Copyright @1996, 2003, Oracle. All rights reserved. About Oracle Enterprise Manager Version 4.1.0.0.0

Database Server Consolidation with Oracle9i RAC

9i RAC will support mixed workloads (OLTP/DSS) within common DB

How many nodes?

- Depends on the underlying platform
- 2-8 nodes is realistic in 9i
- 10g supports up to 64 nodes
- Scalability test your own application TODAY

TPC-C 10g vs. 9iR2 on Superdome

On the same HP PA-RISC Superdome,

10g was 28% faster than 9iR2

As of September 5, 2003: : Oracle Database 10g Enterprise Edition, HP 9000 Superdome, 541,673.76 tpmC, \$10.69/tpmC, available 12/31/03. Oracle9i Database Release 2 Enterprise Edition, HP 9000 Superdome, 423,414.41 tpmC, \$15.64/tpmC, available 8/26/02. Source: Transaction Processing Council (TPC), www.tpc.org

Rolling Patch Upgrade using RAC

Will I need my old Oracle management tools when I migrate to Oracle 10g?

Oracle9i RAC on Linux

- Clustering consists of 2 Oracle-supplied components
 - Clusterware
 - Cluster Manager (oracm)
 - responsible for process level cluster status
 - hangcheck-timer
 - monitors the Linux kernel for system hangs
 - resets node from within kernel if abnormal hangs occur
 - Cluster Files System (OCFS)
 - overcomes limits and management issues of using RAW
 - comparable performance to RAW IO

Unbreakable Linux - New Support Model

- Oracle takes first call;
 provides direct support for the operating system
- S and William
- Oracle has ability to provide relief patches for OS
- Integrated development teams allow adoption of patches in future releases

Summary: Why (and When) RAC?

- Protection from local site system failures
- Why not pure HW cluster?
 - Fast Failover
 - Faster than cold cluster failover solution
- Scalability
 - Add and remove nodes transparently scale-out
- Cost

Back to Basics

- What problems are you trying to solve?
- What are the alternatives from a technical/technology perspective
 - Ask the tough questions and test
 - Feature comparison
 - Pay attention to the "fine print" ... (unsupported datatype, ...)
 - Understand the limitations of the solution and of the implementation
- What is the cost of the solution?
 - Product licensing
 - Additional components needed
 - Don't forget associated cost: application migration, staff training, ...

Industry leaders chose Oracle9i RAC

9i RAC capabilities for addressing IT challenge.

- ✓ High availability
- ✓ High scalability
- ✓ Pay as you grow

Questions and Answers

