
The State Transition Engine
Development of PL/SQL Applications

with a Business Rules Approach

Robert F. Edwards & Dr. Paul Dorsey
Dulcian, Inc.

Agenda

u Problem & Solution

u Business Rules Architecture

u STE Concepts

u STE Development

u Demo – Timesheet App

The Problem

u Tax agency
Ø Hundreds of documents

Ø Each document has a
different process

Ø Processes were highly
changeable (major
changes each year)

u No way to do this in a
traditional environment

How we solved the problem

uNew Idea – Articulate business process flows
and let users write the code.

uNatural way to think about business events
uState Transition Engine (STE)
uUsing this approach -

Ø Users write the code.
Ø STE provides better code management.
Ø Generator creates better code.

uThe STE supports application development.

Advantages of Business Rule
Environment

uUsers participate in design.
uUML model (80% of structural rules)

Ø Still hard to read (20% participation)

Ø Users can’t build them (except to add, modify
attributes)

uProcess Flows (95% of process rules)
Ø 95% participation

Ø Users can build them!!!

Why use a state
transition engine ?

u It is a way of looking at an object (business event).
u It replaces 90% of application logic.
u Things that the STE replaces:

Ø Default values
Ø Object access
Ø Field-level edit privileges
Ø Process flow steps
Ø Program logic
Ø Item ordering in applications

u With an STE, applications become object viewers.
u It is virtually a complete programming language.

State Transition Language

u Process Flow = State Transition Language

u Business Process Flow Diagram = analysis

u Communicate business events to users

u Flow diagrams are graphical

u In STE, process flows are the source code.

u Process flows loaded into STE repository

Architecture

Data

Data Model

Structural

Business
Event

Process
Flows

Process
Business

Rules

uBusiness Rules Repository

ØDomain Builder
ØObject Builder
ØUser-friendly applications

Applications

STE - Description

u Use State Transition Engine
(STE) idea to support
application development.

u Place all process-related
business rules (code) in STE
repository.

u Generate code (PL/SQL).

u Run entire system with ONE
application.

Process Rules Architecture

Traditional
Apps

Generic
Apps

Process
Engine

Repository

Translator

ca
ll

Code

Generator
PL/SQL

Code

UML
Class

Models

ca
ll

Process
Model

Data

The REAL Advantage!!!!

u“The only reason you are able to build so
cheaply is that you foist the programming off
onto your users.”
 Ulka Rodgers

Process Flow Details

uGenerates simple PL/SQL procedures
uUser maintainable

uProcessBusinessEvent(event_oid, result_id)
uAll generated code, no overhead

STE Concepts

uState – An activity at a
point in a process flow

uState Events –
Predefined trigger
points

uTransitions – A
business event changes
state

uTask – A line of code

States

u State:

Ø A point in time in a process flow where an activity
may occur

u Manual

Ø When an object is in a manual state, it stays there
until some event moves it to a different state

u Automatic

Ø When an object is in an automatic state, it executes
some behavior (code) and automatically transitions
to another state

State Types

uManual States
Ø Begin

Ø End

Ø Inbox

Ø Wizard

Ø Suspend

Ø Error

uAutomatic States
Ø Automatic

Ø Auto Begin

State Events

Listed in the order in which they may occur:
u On_Set
u Expiration
u Before_Open
u Manual_Processing
u Auto_Bail
u Bail
u Manual_Decision
u Automatic_Decision
u Listener

Transitions

uManual
Ø Manual Decision

uAutomatic
Ø All other events

uRules for transitions
Ø Automatic – like a case statement

Ø Manual – validation rule

Tasks (1)

uLine of executable code
uTypes used in STE

Ø Assignments –
§ Salary := 5000

§ Party_Name:=First_Name||’ ‘||Last_Name

Ø Function calls –
§ Create_JE_YN := Create_Journal_Entry_YN(OID)

§ Obj_ID:=Create_Bus_Event_ID(‘Add_Employee’)

Tasks (2)

uAttach to events
Ø Before_Open
Ø On_Set

uAttach to transitions
Ø Auto transitions

§ Expire
§ Listener
§ Bail
§ Auto_Decision

Ø Manual Decision
§ Rule_Success, Rule_Fail

STE Development

uTraditional
Ø Requirements, process flow, code C/C++

uSTE
Ø Requirements, process flow (the code)

uA new paradigm in development

uEasier to design, code, test, debug and maintain

Define Flow on Business Event

uBusiness events impact core data structures
Ø Party

State 1

State 2

State 3

State 4

New B.E.

Core
Database

Processed
B.E.

read

write

PO Approval process

Implementation

uGenerate procedures
uProcedures call each

other

uAll variables reside
in PL/SQL table

Code for Future Check

procedure p_auto_565(SelfOID in Number) is
Begin

ste.doc(8890).ValueDT:=glste.f_mature_dt(SelfOID,ste
.doc(8868).ValueTX);

 /*MatureDate :=
glste.f_mature_dt(SelfOID,ErrorMessage) */

 if (ste.doc(8890).ValueDT>stepl.f_sysdate) then
 /*(MatureDate > stepl.f_sysdate)*/
 ste.SetEventState(SelfOID,573);
 elsif 1=1 then
 /*No Rule*/
 ste.SetEventState(SelfOID,570);
 else
 raise uml.e_ste_rule_failure;
 end if;
End;

Advantages of using the STE

uAll code specifications are stored in the
repository.

uActual code is generated.
Ø We can change the generation algorithm at will.
Ø Improved performance – standardized structure
Ø Supports multi-tasking
Ø Enforces record locking for entire business event

uExcellent performance – PL/SQL tables
uNo logic in the application

Ø We can write specific applications, if desired

Part of Larger Picture

u Almost no business logic outside of the repository
u 90% of entire system is generated
u Analysis = Production

Structural Process

Data Model
(UML)

State Transition
Engine

Domains

Triggers Functions

DEMO

uTimesheet Application
Ø Process Flow Development

Contact Information

www.dulcian.com

Dr. Paul Dorsey

paul_dorsey@dulcian.com

Robert F. Edwards

redwards@dulcian.com

