Query

uning Using Advanced Hints

NYOUG Meeting
December 12, 2002

Claudio Fratarcangdli

Adept Technology Inc.
claudiof @computer.org

PUSH PRED Hint

Applicable when doing an outer join to aview

Normally, outer join predicate is evaluated after view is
materialized

PUSH_PRED forces the outer join predicate between table and
view to be pushed into the view

Outer Join to a View without
PUSH PRED Hint

Optimizer steps
= Execute view query independently
2. Materialize view resultsin an internal temporary table

= Quter Join to the view using sort merge or hash join

Index is not available for joining to temporary table
Full scan of temporary table required

Outer Jointo aView with
PUSH PRED Hint

Optimizer steps

= Modify origina statement by inserting outer join predicate
Inside of view statement

= EXxecutejoin

If join column in view isindexed then an indexed
nested loop join can be performed

PUSH PRED Hint Sample Tables

CUSTOMERS

PN

ORDERS

AN

LINE_ITEMS

PRODUCTS

PUSH PRED Hint Sample Tables

CREATE TABLE products (
product_id NUMBER(9),
product_name VARCHAR2(30),
product_descr VARCHAR2(4000),
instock VARCHAR2(1));

PK (Unique Index): product_id
CREATE TABLE orders (
order_id NUMBER(9),

customer_id NUMBER(6));

PK: order_id
Non-unigue index: order_id,customer _id

CREATE TABLE line items(
order_id NUMBER(9),
product_id NUMBER(9),
comments VARCHAR2(80))

PK (Unique index): product_id,

order_id

CREATE TABLE customers (
customer_id NUMBER(6),
customer_name VARCHAR2(30));

PK(Unique Index): customer _id

PUSH PRED Hint Query

SELECT p.product name, 0.product id
FROM

products P,

(SELECT Ii1.product 1d

FROM line _i1tems 11, orders o

WHERE Bi1.order_i1d = o.order_id) 1|
WHERE p.product _id = l._product_i1d(+)

Query Plan without Hint

SELECT STATEMENT Optimizer=CHOOSE
HASH JOIN (OUTER)
TABLE ACCESS (FULL) OF "PRODUCTS"
VIEW

HASH JOIN
TABLE ACCESS (FULL) OF "ORDERS™®
TABLE ACCESS (FULL) OF “LINE_ITEMS*

Query with PUSH PRED Hint

SELECT /*+ PUSH PRED(N) */ p.product_name, I.product id
FROM

products P,

(SELECT Ii1.product 1d

FROM line _i1tems 11, orders o

WHERE Bi1.order_id = o.order_id) 1|
WHERE p.product _id = l._product_i1d(+)

Query Plan unchanged despite Hint

SELECT STATEMENT Optimizer=CHOOSE
HASH JOIN (OUTER)
TABLE ACCESS (FULL) OF "PRODUCTS"
VIEW
HASH JOIN
TABLE ACCESS (FULL) OF "ORDERS"
TABLE ACCESS (FULL) OF "LINE_ITEMS"

Parametersthat Control Pushing
Predicate into View

PUSH PRED Hint doesn't work in 8i
Fixed in 9i

In 8i need to use undocumented initialization parameter

_PUSH_JOIN_PREDICATE

Set either in init.orafile or with ALTER SESSION statement

ALTER SESSION SET " PUSH_JOIN_PREDICATE" = TRUE

Query with PUSH PRED Hint

ALTER SESSION SET " _PUSH_JOIN_PREDICATE"™ = TRUE;

SELECT /*+ PUSH PRED(N) */ p.product_name, I.product id
FROM

products P,

(SELECT Ii1.product id

FROM Bine_i1tems I1, orders o

WHERE li.order_id = o.order_id) 1|
WHERE p.product _id = l._product_i1d(+)

Query Plan still not changed

SELECT STATEMENT Optimizer=CHOOSE
HASH JOIN (OUTER)
TABLE ACCESS (FULL) OF "PRODUCTS"
VIEW
HASH JOIN
TABLE ACCESS (FULL) OF "ORDERS™
TABLE ACCESS (FULL) OF "LINE_ITEMS"

|ndex Statistics Affect Pushing
Predicate into View

= Optimizer assumes full table scan is cheaper than using
index on LINEITEMS(PRODUCT _ID,ORDER _1D)

» Need to convince optimizer that cost of using index on
LINEITEMS(PRODUCT _ID,ORDER _ID) islessthan cost
of full table scan

» Useinitialization parameter:

OPTIMIZER INDEX_COST ADJ

OPTIMIZER INDEX COST ADJ
| nitialization Parameter

Parameter may be set either in init.orafileor using ALTER
SESSION statement

Range of values: 1 .. 10000
Default value: 100

Lower valuestell optimizer that cost of using an index is
lower

L ower values cause optimizer to favor use of indexes

Query with PUSH PRED Hint

ALTER SESSION SET " _PUSH_JOIN_PREDICATE"™ = TRUE;
ALTER SESSION SET OPTIMIZER_INDEX_COST_ADJ = 1;

SELECT /*+ PUSH PRED(l) */ p.product name, lI.product id
FROM

products P,
(SELECT li.product_id FROM line _items li, orders o
WHERE lBi.order_id = o.order_id) 1

WHERE p.product id = I.product_id(+)

Query Plan

SELECT STATEMENT
NESTED LOOPS (OUTER)
TABLE ACCESS (FULL) OF "PRODUCTS"
VIEW PUSHED PREDICATE
NESTED LOOPS
INDEX (RANGE SCAN) OF "LINE_ITEMS_PK" (UNIQUE)
INDEX (RANGE SCAN) OF "ORDERS 11" (NON-UNIQUE)

Practical Example of PUSH JOIN Hint

CUSTOMERS

PN

ORDERS

AN

LINE_ITEMS

PRODUCTS

Practical Example of PUSH JOIN Hint

CREATE TABLE products (CREATE TABLE line items(
product_id NUMBER(9), order_id NUMBER(9),
product_name VARCHAR2(30), product_id NUMBER(9),
product_descr VARCHAR2(4000), comments VARCHARZ2(80))
instock VARCHAR2(1));

PK (Unique index): product_id,

PK (Unique Index): product_id order_id

CREATE TABLE orders(CREATE TABLE customers (
order_id NUMBER(9), customer_id NUMBER(6),
customer_id NUMBER(6)); customer_name VARCHAR2(30));

PK: order _id PK (Unique Index): customer _id

Non-unigue index: order_id,customer _id

Practical Example of PUSH JOIN Hint

= Query isexecuted by acurrently logged in customer

» Find products where
Product description matches some keyword search criteria
AND

Product is either in stock OR
has been bought anytime in the past by the customer

For each matching product:

Show in stock status and whether or not it has been bought by
current customer

Sort matching products with most relevant first

Show 150 most relevant matching products only

Use Intermedia Text to do the text search matching

Practical Example of PUSH JOIN Hint

Example query,

Find products with product description containing text, "SUN"

Sample Output
PRODUCT NAME SCORE IN STOCK BOUGHT
Productl 9
Product? 9
Product3 9
Product4 8

Sample Tables

Number of Rowsin Sample Tables

PRODUCTS - 20000
ORDERS — 58000
LINE_ITEMS - 58000

Sample Query: First Attempt

SELECT product _name, scor, instock, purchased
FROM
(
SELECT /*+ ORDERED USE NL(li,0) */
SCORE(10) scor, product name, instock,
DECODE(o.order_id,NULL,*N","Y") purchased
FROM products p,
line i1tems 11,
orders o
WHERE
CONTAINS(product_descr, *"SUN", 10) > O
AND p.product id = Ii1.product 1d(+)
AND li.order_id = o.order_1d(+)
AND o.customer_1d(+) = 999
AND (p-.instock = "Y" OR o.order_i1d IS NOT NULL)
GROUP BY p.product name, SCORE(10), li.product id,
instock
ORDER BY SCORE(10) DESC

)
WHERE ROWNUM < 151

Sample Query: First Attempt Query Plan/Stats

call count cpu elapsed disk query current rows
Parse 1 0.09 0.09 0 94 0 0
Execute 1 0.02 0.02 0 0 0 0
Fetch 11 3.00 3.03 0 28153 0 150
total 13 3.11 3.14 0 28247 0 150

O SELECT STATEMENT GOAL: CHOOSE
150 COUNT (STOPKEY)

150 VIEW
150 SORT (GROUP BY STOPKEY)
19702 FILTER
19702 NESTED LOOPS (OUTER)
19703 NESTED LOOPS (OUTER)
201 TABLE ACCESS (BY INDEX ROWID) OF "PRODUCTS*®
201 DOMAIN INDEX OF "PRODUCT_TEXT*
19702 INDEX (RANGE SCAN) OF "LINE_ITEMS_PK®" (UNIQUE)

19500 INDEX (RANGE SCAN) OF "ORDERS_11" (NON-UNIQUE)

Sample Query: Second Attempt

First find 150 most relevant PRODUCT Sthat will match
criteria

ThenjointoLINE_ITEMS

Number of PRODUCTSand LINE_ITEMSrowsjoined
IS fewer

L essrows accessed/ Better performance

SELECT /*+ ORDERED USE_NL(hi,ord) */ scor, product_name,
DECODE(ord.order_id,NULL,*N","Y") purchased, instock

FROM
(

SELECT scor, product _name, product_id, instock
FROM

(
SELECT SCORE(10) scor, product name, product id, instock

FROM products p
WHERE CONTAINS(product_descr, “"SUN®, 10) > O
AND (instock = "Y" OR
EXISTS
(SELECT /*+ ORDERED USE_NL(ord) */ 1
FROM line_items 11, orders ord
WHERE ord.customer_id = 999 AND li.order_id = ord.order_id
AND li.product_id = p.product_id AND ROWNUM = 1

)
ORDER BY SCORE(10) DESC

)
WHERE ROWNUM < 151

) b,
line items 11,
orders ord
WHERE p.product_id = li.product_id(+) AND li.order_id
ord.customer_id(+) = 999
GROUP BY scor,product _name, li.product id,

ORDER BY scor DESC

= ord.order_id(+) AND

instock

Sample Query: Second Attempt Query Stats

call count cpu elapsed disk query current rows
Parse 1 0.08 0.09 0 0 0 0
Execute 1 0.01 0.01 0 0 0 0
Fetch 11 0.42 0.56 0 18140 0 150

Sample Query: Second Attempt Query Plan

0O SELECT STATEMENT GOAL: CHOOSE
150 SORT (GROUP BY)
14752 NESTED LOOPS (OUTER)

14753 NESTED LOOPS (OUTER)
151 VIEW
151 COUNT (STOPKEY)
150 VIEW
150 SORT (ORDER BY STOPKEY)
200 FILTER
201 TABLE ACCESS (BY INDEX ROWID) OF ®PRODUCTS™
201 DOMAIN INDEX OF "PRODUCT TEXT"
0 COUNT (STOPKEY)
0 NESTED LOOPS
0 INDEX (RANGE SCAN) OF "LINE_ITEMS PK" (UNIQUE)
0 INDEX (RANGE SCAN) OF "ORDERS_11" (NON-UNIQUE)
14752 INDEX (RANGE SCAN) OF "LINE_ITEMS_PK" (UNIQUE)

14650 INDEX (RANGE SCAN) OF "ORDERS 11" (NON-UNIQUE)

Sample Query: Final Attempt

Donot jointo LINE_ITEMSto determine if customer
has bought product

Join to PRODUCTS table again and do correlated
subquery to seeif thereexist any LINES ITEMSfor this
product and customer

Reducesthenumber of LINE_ITEMS rowsthat are
accessed

Better performance

SELECT /*+ PUSH_PRED(op) */ scor, product_name,
DECODE(op.product_id,NULL,*N","Y") purchased, instock
FROM
(
SELECT scor, product_name, product_id, instock
FROM

(
SELECT /*+ FIRST_ROWS */ score(10) scor, product_name, product_id,

FROM products p
WHERE CONTAINS(product_descr, "SUN", 10) > O
AND (instock = "Y* OR
EXISTS
(SELECT /*+ ORDERED USE_NL(ord) */ 1
FROM line_items li, orders ord
WHERE
ord.customer_id = 999 AND li.order_id = ord.order_id
AND li.product_id = p.product_id AND rownum = 1
)
)
ORDER BY SCORE(10) DESC
)
WHERE ROWNUM < 151
) P,

(
SELECT product_id FROM products p

WHERE EXISTS
(SELECT /*+ ORDERED USE_NL(ORD) */ 1
FROM line_items 11, orders ord
WHERE ord.customer_id = 999 AND li.order_id = ord.order_id
AND I1.product_id = p.product_id AND ROWNUM = 1

)
) op
WHERE p.product_id = op.product_id(+)
ORDER BY scor DESC

instock

Final Attempt Query Plan/Stats/ No Hint

call count cpu elapsed disk query current rows
Parse 1 1.63 1.67 0 94 0 0
Execute 1 0.22 0.22 0 0 0 0
Fetch 11 1.46 1.48 0 132607 0 150

total 13 3.31 3.37 0 132701 0 150

Final Attempt Query Plan / No Hint

O SELECT STATEMENT GOAL: HINT: FIRST ROWS
150 SORT (ORDER BY)
150 HASH JOIN (OUTER)

150 VIEW
150 COUNT (STOPKEY)
150 VIEW
150 FILTER
150 TABLE ACCESS (BY INDEX ROWID) OF "PRODUCTS"
150 DOMAIN INDEX OF "PRODUCT TEXT"
0 COUNT (STOPKEY)
0 NESTED LOOPS
0 INDEX (RANGE SCAN) OF "LINE_ITEMS PROD" (NON-UNIQUE)
0 INDEX (RANGE SCAN) OF "ORDERS 11" (NON-UNIQUE)
200 VIEW
200 INDEX (FULL SCAN) OF "PRODUCT PK" (UNIQUE)
20000 COUNT (STOPKEY)
200 NESTED LOOPS
56002 INDEX (RANGE SCAN) OF "LINE_ITEMS_PROD" (NON-UNIQUE)

200 INDEX (RANGE SCAN) OF "ORDERS_I1" (NON-UNIQUE)

Final Attempt Query Plan/Stats/ With Hint

call count cpu elapsed disk query current rows
Parse 1 0.01 0.01 0 0 0 0
Execute 1 0.01 0.01 0 0 0 0
Fetch 11 0.07 0.07 0 1392 0 150

Final Attempt Query Plan / With Hint

O SELECT STATEMENT GOAL: HINT: FIRST_ROWS

150
150
151
151
150
150
150
150

0

0]

o)

0
150
150
150
150
330
150

SORT (ORDER BY)
NESTED LOOPS (OUTER)
VIEW
COUNT (STOPKEY)
VIEW
FILTER
TABLE ACCESS (BY INDEX ROWID) OF "PRODUCTS"
DOMAIN INDEX OF "PRODUCT TEXT"
COUNT (STOPKEY)
NESTED LOOPS
INDEX (RANGE SCAN) OF "LINE_ITEMS PK" (UNIQUE)
INDEX (RANGE SCAN) OF "ORDERS 11" (NON-UNIQUE)
VIEW PUSHED PREDICATE
INDEX (UNIQUE SCAN) OF "PRODUCT PK" (UNIQUE)
COUNT (STOPKEY)
NESTED LOOPS
INDEX (RANGE SCAN) OF "LINE_ITEMS_PK" (UNIQUE)
INDEX (RANGE SCAN) OF "ORDERS 11" (NON-UNIQUE)

HASH AJ Hint

Usefor NOT IN querieswherethereisnoindex on
column in nested query

Find rowsin table A wherethere are no matching rows
In table B

Find CUSTOMERS who have no ORDERS
Thereisnoindex on ORDERS.CUSTOMER _ID

NOT IN Example/ No Hint

SELECT count(*) FROM customers
WHERE customer_i1d NOT IN
(SELECT customer_1d FROM orders)

NOT IN/No Hint Query Stats/Plan

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 67.16 67.24 0 141975 4 1
total 4 67.16 67.24 0 141975 4 1

O SELECT STATEMENT GOAL: CHOOSE

1 SORT (AGGREGATE)
998 FILTER
1000 INDEX (FAST FULL SCAN) OF "CUSTOMER_PK®" (UNIQUE)
999 INDEX (FULL SCAN) OF "ORDERS_ 11" (NON-UNIQUE)

NOT IN Example/ No Hint

For each row in CUSTOMERS do a full scan of
ORDERSto find a matching row

999 CUSTOMERS rowstimes 58000 ORDERSrows ~=
58,000,000

~1000 * 58000 = 58,000,000 row accessesrequired to
executethis query

Thisexplains high number of block accesses

Very expensive

NOT IN Example/With HASH AJ Hint

SELECT count(*) FROM customers
WHERE customer_i1d NOT IN
(SELECT /*+ HASH AJ */ customer_id
FROM orders)

NOT IN/With HASH AJ Hint / Query Plan/Stats

call count cpu elapsed disk query current rows
Parse 1 0.01 0.01 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.14 0.14 0 118 8 1
total 4 0.15 0.15 0 118 8 1

O SELECT STATEMENT GOAL: CHOOSE
1 SORT (AGGREGATE)
098 HASH JOIN (ANTI)
999 INDEX (FAST FULL SCAN) OF "CUSTOMER_PK" (UNIQUE)
58000 VIEW OF "VW NSO 1°
58000 TABLE ACCESS (FULL) OF "ORDERS"

NOT IN Example/ With HASH_AJ Hint

= HASH_AJHint forcesoptimizer to performaHASH ANTI-JOIN
= HASH ANTI-JOIN issimilar to HASH JOIN

» |nstead of finding matching rows, find rowsin onetable with no
matching rowsin other table

= Eachtablein HASH ANTI-JOIN isscanned only once

= 909 CUSTOMERS rows+ 58000 ORDERS rows = 58999 r ow
aCccesses

= 58,999 isfar lessthan 58,000,000 row accesses without HASH _AJ
hint

» Thisexplainslow number of block accessesin stats

HASH AJ Prereguisites

= Join columns must he NOT NULL

= Assume ORDERS.CUSTOMER_ID or
LINE ITEMS.CUSTOMER IDwereNULLABLE

= Query must berewritten as

SELECT count(*) FROM customers
WHERE customer _i1d 1S NOT NULL AND
customer_i1d NOT IN
(SELECT /*+ HASH _AJ */ customer _id
FROM orders
WHERE customer _id 1S NOT NULL)

NOT EXISTS

= MYTH:
NOT EXISTS aways better than NOT IN
» Assume ORDERS.CUSTOMER ID isindexed

= 58000 rowsin CUSTOMERS table

SELECT count(®)
FROM customers c
WHERE NOT EXISTS
(SELECT 1 FROM
orders o
WHERE o.customer_i1d = c.customer _i1d);

NOT EXISTSVersusNOT IN With HASH_AJ

NOT Existswith Index on ORDERS.CUSTOMER _ID

call count
Parse 1
Execute 1
Fetch 2
total 4

call count
Parse 1
Execute 1
Fetch 2

elapsed

116110

NOT EXISTSVersusNOT IN with HASH_AJ

Case 1: No Index on Inner Table
= NOT IN with HASH_AJ s better

Case 2: Index on Inner Table
= Number of rowsin QOuter TableisLarge
= NOT IN with HASH_AJis better
= Example: 58000 rowsin CUSTOMERS table

Case 3: Index on Inner Table
= Number of rowsin Outer Tableis Small
= Number of rowsin Inner Tableis Large
* NOT EXISTSisusualy better

Size of Inner Table may also affect result
= NOT EXISTS may perform better for large indexed inner table

HASH SJ Hint

Use for CORRELATED EXISTS queries where thereis no
Index on column in nested query

Find rows in table A where there exist matching rowsin
table B

Find CUSTOMERS who have one or more ORDERS
Thereisno index on ORDERS.CUSTOMER _ID

HASH SJ Example

SELECT count(*) FROM customers c

WHERE EXISTS
(SELECT 1 /*+ HASH SJ */ FROM orders o
WHERE c.customer_1d = o.customer_1id)

HASH SJ Example Query Stats/Plan

call count cpu elapsed disk query current rows
Parse 1 0.02 0.05 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.12 0.12 0 118 8 1
total 4 0.14 0.17 0 118 8 1

O SELECT STATEMENT GOAL: CHOOSE
1 SORT (AGGREGATE)
1 HASH JOIN (SEMI)
999 INDEX (FAST FULL SCAN) OF *CUSTOMER_PK® (UNIQUE)
58000 TABLE ACCESS (FULL) OF "ORDERS”

HASH SJ Example

HASH SJ Hint forces optimizer to performa HASH SEMI-JOIN
HASH SEMI-JOIN issimilar to HASH JOIN

Unliketrue HASH JOIN, only onerow from outer tableisreturned
even if thereismorethan one matching row from inner table

Each tablein HASH SEMI-JOIN isscanned only once

999 CUSTOMERS rows + 58000 ORDERS rows=
58999 r ow accesses

Thisarefar lessthan number of row accessesrequired without
HASH SJ hint

Thisexplainslow number of block accessesin stats

Correlated EXISTSwith Index on Inner Table

= Example:

SELECT count(*) FROM customers cC
WHERE EXISTS
(SELECT 1 FROM orders o
WHERE c.customer_i1d = o.customer_id)

* Index on ORDERS.CUSTOMER_ID

* HASH SJHint can yield better performance if number of
rows in outer table (CUSTOMERYS) islarge

HASH AREA SIZE Init Parameter

* HASH AREA_SIZE determines amount of memory
allocated for HASH ANTI-JOIN, HASH SEMI-JOIN and
HASH JOIN.

» Set HASH_AREA_SIZE appropriately when using
HASH AJor HASH SJHint on large tables

= Settablevia
* init.orafile
= ALTER SYSTEM SET HASH AREA _SIZE=
» ALTER SESSION SET HASH AREA _SIZE=

PUSH SUBQ Hint

» Useto force evaluation of correlated subqueries as early as
possible in aquery involving joins

= Optimizer usually evaluates subqueries after evaluating
joins

= PUSH_SUBQ hint causes optimizer to evaluate subgueries
before evaluating all joins

PUSH SUBQ Hint Example

= Table

CREATE TABLE shipments (
shipment_id NUMBER(6),
order_id NUMBER(6),
shipment_date DATE);

PK (Unique Index): shipment_id
Index On: order_id
» |ndex

Index on line_items(order_id,product_id)

PUSH SUBQ Example/ No Hint

Find all orders and order lines for orders that have shipped

SELECT /*+ ORDERED USE _NL(L,P) */ o.order_id,
I .comments, p.product name
FROM orders o, line_items 1, products p
WHERE o.order_id = l.order_1id
AND I._product _id = p.product_id
AND EXISTS
(SELECT 1
FROM shipments s
WHERE s.order _i1d = o.order_id)

AND o.order_i1d < 50000;

PUSH SUBQ Example/ NoHint: Query Stats

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1000 5.03 5.06 0 417785 4 999

total 1002 5.03 5.06 0 417785 4 999

PUSH SUBQ Example/ No Hint: Query Plan

O SELECT STATEMENT GOAL: CHOOSE

999
44502
47000
47000
93998
93998
91500
91500
44501

FILTER
NESTED LOOPS
NESTED LOOPS
INDEX (FAST FULL SCAN) OF "ORDERS_I11" (NON-UNIQUE)
TABLE ACCESS (BY INDEX ROWID) OF "LINE_ITEMS*
INDEX (RANGE SCAN) OF "LINE_ITEMS_ORD" (NON-UNIQUE)
TABLE ACCESS (BY INDEX ROWID) OF "PRODUCTS*®
INDEX (UNIQUE SCAN) OF "PRODUCT_PK®" (UNIQUE)
INDEX (RANGE SCAN) OF "SHIPMENTS_ORD®" (NON-UNIQUE)

PUSH SUBQ Example/ No Hint

Optimizer finds 47000 matching ORDERS rows

It joins 47000 ORDERS rowswith LINE_ITEMS and
PRODUCTS

After join is processed 44502 rows are found

For each row in the join result the correlated subquery is
executed

Correlated subquery filters out all but 999 rows

Very expensive

PUSH SUBQ Example/ With Hint

PUSH SUBQ Hint placed in outer query block

SELECT /*+ ORDERED USE NL(L,P) PUSH SUBQ */ o.order_id,
I .comments, p.product name
FROM orders o, line_items 1, products p
WHERE o.order_i1d = l.order_id
AND B_.product_id = p.product id
AND EXISTS
(SELECT 1
FROM shipments s
WHERE s.order _i1d = o.order_id)
AND o.order_i1d < 50000;

PUSH SUBQ /With Hint: Query Stats

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1000 1.39 1.52 0 103149 4 999

total 1002 1.39 1.52 0 103149 4 999

PUSH SUBQ /With Hint: Query Plan

O SELECT STATEMENT GOAL: CHOOSE
999 NESTED LOOPS
1000 NESTED LOOPS

1000 INDEX (FAST FULL SCAN) OF "ORDERS_I1" (NON-UNIQUE)
46999 INDEX (RANGE SCAN) OF "SHIPMENTS_ORD" (NON-UNIQUE)
1998 TABLE ACCESS (BY INDEX ROWID) OF "LINE_ITEMS"
1998 INDEX (RANGE SCAN) OF "LINE_ITEMS_ORD" (NON-UNIQUE)

999 TABLE ACCESS (BY INDEX ROWID) OF "PRODUCTS*
1998 INDEX (UNIQUE SCAN) OF "PRODUCT_PK®" (UNIQUE)

PUSH SUBQ Example/ No Hint

Optimizer first finds matching ORDERS rows

For each matching ORDERSrow it executesthe
correlated subquery against SHIPMENTS

999 ORDERS reamain

999 ORDERSrowsarejoined with LINE_ITEMSand
PRODUCTS

Joining 999 ORDERSrowswith LINE_ITEM S and
PRODUCTSis much mor e efficient than joining 47000
ORDERSTrows

Thisexplainslower number of block accesses

PUSH SUBQ Hint

= UseWhen

* Thereisacorrelated subquery that correlates back to a
table early in join order

* The correlated subquery substantially reduces the
number of rows in the outer table

= Benefit

» Filtering tables early injoin order prior to doing join
substantially reduces the number of rows accessed in
tables that occur later in join order

