
Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

PL/SQL Practicum #2: Assertions,
Exceptions and Module Stability

John Beresniewicz

Technology Manager

Precise Software Solutions

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Agenda

• Design by Contract

• Assertions

• Exceptions

• Modular Code

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

DESIGN BY CONTRACT

A software engineering discipline for
building reliable systems

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

 Design by Contract

Design by Contract is a powerful metaphor that... makes
it possible to design software systems of much higher
reliability than ever before; the key is understanding that
reliability problems (more commonly known as bugs)
largely occur at module boundaries, and most often
result from inconsistencies in both sides’ expectations.

Bertrand Meyer, Object Success

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Design by Contract

• Software modules have client-supplier relationships
– C l ient requests and suppl ie r responds

• These relationships can be expressed as contracts
between client and supplier

• Formalizing and enforcing module contracts
promotes software reliability

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Contract elements

• PRECONDITIONS
– W hat wi l l be t rue when module i s entered?

– Cal ler ’s obl igat ion and module’s benef i t

• POSTCONDITIONS
– W hat w i l l be t rue when module completes?

– Module’s obl igat ion and cal ler ’s benef i t

• INVARIANTS
– Anyth ing that shou ld not change as a resu l t o f module

execut ion

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Design by Contract and code stability

• TRUST
– Precondit ions a l low modules to t rust thei r input data

– Postcondi t ions al low cl ients to t rust module output

• CORRECTNESS
– Expl ic i t contracts require careful considerat ion

• Trusted data + correct algorithms = solid code

• SAFETY
– Invar iant preservat ion minimizes r isk to o ther modules

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

PL/SQL Call Structure

PROCEDURE foo IS...
 IF pkg.fcn(p1var) THEN ...END IF;

PACKAGE pkg
 FUNCTION fcn (p1_IN IN INTEGER)
 RETURN BOOLEAN

p1var = 1234 (pre)
TRUE or FALSE (post) The contract

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

PL/SQL and Design by Contract

• Design by Contract = formalizing interfaces
– Precondit ions are obl igat ions o f cal l ing module

– Postcondi t ions are obl igat ions of cal led module

– I n v a r i a n t s a r e p r e s e r v e d s y s t e m s t a t e s

• Module IN parm values must obey preconditions

• Module OUT parm and function RETURN values
must satisfy postconditions
– Implemented by module logic

• Exception handling state = invariant violation

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

ASSERTIONS

Enforcing contracts programmatically

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

PL/SQL assertions

• Test a boolean condition and complain if not TRUE
– W hat does “complain” mean?

• PL/SQL assertions implemented as a procedure
– A l w a y s e x e c u t e d , u n l i k e s o m e l a n g u a g e e n v i r o n m e n t s

PROCEDURE Assert (cond_IN IN BOOLEAN);

Assert(parm1 BETWEEN 0 AND 100);
Assert(plsqltbl.COUNT > 0);
Assert(vbl2 IS NOT NULL);
Assert(fcnX > constantY);

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Simplest assert procedure

• Complain = raise assertfail exception
– S y s tem s ta te change: except ion handl ing

• NULL tests FALSE and raises the exception

PROCEDURE assert (cond_IN BOOLEAN)
IS
BEGIN
 IF NOT NVL(cond_IN,FALSE)
 THEN
 RAISE ASSERTFAIL;
 END IF;
END assert;

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Assert contract preconditions

• Module calls have contract obligations

• Module parameters implement the contract
– I N p a r a m e t e r v a l u e s m u s t o b e y p r e c o n d i t i o n s

– O U T a n d R E T U R N v a l u e s m u s t o b e y postcondi t ions

• Assert preconditions at module entry points
– Enforces one s ide o f a l l cont racts

• Increased probability all contracts obeyed equates to
increased code stability

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Packaging assertions I

 PACKAGE foo IS
 ASSERTFAIL EXCEPTION;
 PROCEDURE proc1 (p1 integer);
 END foo;

PACKAGE BODY foo IS
BEGIN
 PROCEDURE proc1 (p1 integer) IS
 BEGIN
 assert(p1 < 100); -- precondition
 /* proc1 code */
 END proc1;

• Standard local assertion module in each package
reduces coupling

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Callers can program defensively

• Assert does not externalize error, catching scope
decides what to do

 BEGIN
 -- other code
 BEGIN
 callme(p1val);
 EXCEPTION WHEN ASSERTFAIL
 THEN apologize_for_p1val;
 END;
 -- more code

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Performance considerations

• Each call to assert is additional overhead
– B U T . . .asser t i s package loca l and code min imal

• Assertion mechanism cannot be turned on/off
– Di f fe rences o f op in ion ex is t on turn ing o f f asser t ion

c h e c k s

• Modules called very frequently may need attention
– Invar iant within large loops

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Turning off assertions

• Simply comment them out but leave in code
– They are par t o f module’s speci f icat ion

• Only suppress for production performance issue

 FUNCTION calledoften
 (p1 varchar2, p2 integer) RETURN BOOLEAN
 IS
 BEGIN
 -- assert(LENGTH(p1) BETWEEN 10 AND 100);
 -- assert(BITAND(p2,3) = 3);
 /* code for module... */
 END calledoften;

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

EXCEPTIONS

Dealing with problems systematically

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Exception fundamentals

• “Something” undesirable or unexpected happens
– W e c a l l t h a t s o m e t h i n g a n E X C E P T I O N

– E i ther Oracle or appl icat ion may s ignal except ion

• Processing jumps from execution block to
exception block
– I f no exception block, exi t to cal ler’s exception block.. .

• Declaration exceptions exit to caller
– Not good, a local problem that cannot be deal t wi th local ly

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Exception classes and treatments

• Anticipated, recoverable and false alarms
– P r e s e r v e n o r m a l p r o g r a m f l o w u s i n g s u b - b l o c k s

• Anticipated, unrecoverable
– Contract v io lat ions (Assert fai l e x c e p t i o n s)

– F ix modules to obey cont racts

• Unanticipated, uncatchable
– Declara t ion except ions

• Unanticipated, catchable
– C lean up, log error and fa i l out for analys is

– D O N O T c a t c h a n d c o n t i n u e (u n l e s s m a n d a t o r y)

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Nesting, program flow, exceptions

BEGIN

END;

BEGIN
EXCEPTION
END;

BEGIN
END;

BEGIN
EXCEPTION
END;

Normal exit

Exception out

Exception out

Exception handled

Exception handled

Use nesting to continue normal program flow

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Catching an exception on purpose

• The exception (or not) provides the essential
information

 FUNCTION IsNumber (txt_IN IN varchar)
 RETURN BOOLEAN
 IS
 test NUMBER;
 BEGIN
 BEGIN
 test := TO_NUMBER(txt_IN);
 EXCEPTION
 WHEN VALUE_ERROR THEN null;
 END;
 RETURN (test IS NOT NULL);
 END IsNumber;

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Let’s clean that function up some...

FUNCTION IsNumber (txt_IN IN varchar)
 RETURN BOOLEAN
IS
 test NUMBER;
 myBoolReturn BOOLEAN := FALSE;
BEGIN
 BEGIN
 test := TO_NUMBER(txt_IN);
 myBoolReturn := TRUE;
 EXCEPTION
 WHEN VALUE_ERROR
 THEN myBoolReturn := FALSE;
 END;
 RETURN myBoolReturn;
END IsNumber;

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Best Practice: smart scoping

• WHEN an Oracle exception can be anticipated in a
section of code,

• AND that exception can be safely handled,

• THEN enclose the code in a sub-block and handle
the exception (and only that exception)

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Declaration exception

 PROCEDURE notsogood IS
 codevar CHAR(1) := ‘TOO LONG’;
 BEGIN
 RAISE VALUE_ERROR;
 EXCEPTION
 WHEN OTHERS THEN null;
 END notsogood;

ORA-06502: PL/SQL: numeric or value error

Easily preventable by code inspection.

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Declaration time bomb

 PROCEDURE notmuchbetter IS
 mycode codes.code%TYPE := ‘SIZE?’;
 BEGIN
 RAISE VALUE_ERROR;
 EXCEPTION
 WHEN OTHERS THEN null;
 END notmuchbetter;

ORA-06502: PL/SQL: numeric or value error

Code may break due to change in codes.code
datatype.

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Declaration mystery error

 PROCEDURE reallybad IS
 localvar integer := somefcn;
 BEGIN
 RAISE VALUE_ERROR;
 EXCEPTION
 WHEN OTHERS THEN null;
 END reallybad;

ORA-06502: PL/SQL: numeric or value error

Where is the exception generated?

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Best Practice: declare safely

• Initialize declarations with safe assignments only
– R e m e m b e r i n g t h a t s a f e t o d a y m a y n o t b e s a f e t o m o r r o w

• DO NOT use functions to initialize declarations
– Unless the funct ions a re abso lu te ly t rus ted

 PROCEDURE willnotfail IS
 localvar INTEGER;
 BEGIN
 localvar := initfunction;
 EXCEPTION
 WHEN OTHERS THEN null;
 END willnotfail;

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Worst practice: catch and ignore

• Masks out ALL errors: callers will think all is fine
when something really bad may have happened

• Returns NULL for BOOLEAN, losing opportunity to
escape problematic three-valued logic of SQL

 FUNCTION badfcn(p1_IN integer)
 RETURN BOOLEAN IS
 BEGIN
 /* some code */
 EXCEPTION
 WHEN OTHERS THEN RETURN null;
 END badfcn;

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Catch, cleanup and RAISE

• Serious errors should be logged for analysis

• Clean up any resources that persist beyond call

• Re-raise exception to pass on to caller
– “D e a d p r o g r a m s t e l l n o l i e s ”

EXCEPTION
 WHEN OTHERS
 THEN
 log_error(SQLCODE);
 /* local clean up
 (e.g.close cursors) */
 RAISE;

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Who should catch exceptions?

BEGIN
EXCEPTION
END;

BEGIN
EXCEPTION
END;

BEGIN
EXCEPTION
END;

call

call

ORA-345

?

?

?

A nontrivial question with
many possible answers.

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

MODULAR CODE

Assembling systems from stable components

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Why should we modularize?

• Increased contract enforcement
– M o r e i n t e r f a c e s , m o r e a s s e r t s , m o r e p r o b l e m s c a u g h t

• Code normalization and reuse
– Do th ings cor rect ly in one p lace (implement once, cal l

m a n y)

• Smaller, tighter source code units promote
correctness
– Better a lgor i thm inspect ion (especia l ly by others)

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Increased contract enforcement

Assert

Assert

AssertAssert Assert

Assert

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Where should we modularize?

• At the system level:
– Divide functional i ty into logical components

– Organize components h ierarchica l ly

• Around data:
– Encapsu la te (tab le) da ta access and t ransact ions

– S h a r e d a b s t r a c t d a t a t y p e s

• Within modules:
– P r i v a t e p a c k a g e m o d u l e s t o e n c a p s u l a t e s h a r e d f u n c t i o n s

– Pr iva te modules wi th in p rocedures and funct ions

Basically everywhere and as much as possible!

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Stable, compact module

• Boolean function determines if date is weekend
– “W e e k e n d ” d e p e n d s o n l o c a t i o n

FUNCTION isWeekend(loc_IN IN varchar2
 ,date_IN IN date)
 RETURN BOOLEAN IS
 tmp_dy integer;
BEGIN
 assert(loc_IN IN (‘US’,’IL’));
 assert(date_IN IS NOT NULL);
 tmp_dy := TO_CHAR(date_IN,‘D’); -- problem?
 CASE loc_IN
 WHEN ‘US’ THEN RETURN (tmp_dy IN (7,1));
 WHEN ‘IL’ THEN RETURN (tmp_dy IN (6,7));
 END CASE;
END isWeekend;

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

isWeekend contract elements

• Date_IN not null

• Loc_IN not null

• Loc_IN either ‘US’ or ‘IL’

• RETURN TRUE if date_IN is
weekend for loc_IN, FALSE
otherwise

PRECONDITIONS POSTCONDITIONS

POTENTIAL PROBLEM?

• Do we REALLY know how TO_CHAR works (given NLS options)?

• We could introduce a new precondition:

-- September 2,2001 is Sunday
assert(1 = TO_CHAR(TO_DATE(’09:02:2001’,’MM:DD:YYYY’)
 ,’D’));

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Potential problem confirmed

The date format element D returns the number of the day of
the week (1-7). The day of the week that is numbered 1 is
specified implicitly by the initialization parameter
NLS_TERRITORY.

Oracle8i SQL Reference

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Summary Points

• Use standardized assertions
– Enforce precondi t ions in a l l modules

• Code clearly and carefully
– Postcondi t ions d e p e n d o n p r o p e r a l g o r i t h m s

• Use code inspection
– C lear , documented log ic p romotes accuracy

• Modularize
– M o r e m o d u l e s = m o r e c o n t r a c t s

– S m a l l execut ion sect ions promote bet ter inspect ions

• Eliminate exceptions
– Assert , ant icipate, avoid invar iant v iolat ions

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Resources

• Object-oriented Software Construction, 2nd Edition
by Bertrand Meyer (Prentice-Hall, 2001)

• Object Success by Bertrand Meyer (out of print)

• The Pragmatic Programmer by Andrew Hunt, et al
(Addison-Wesley, 1999)

• PL/SQL Best Practices by Steven Feuerstein
(O’Reilly & Associates, 2001)

