Prec:’se

PL/SQL Practicum #2: Assertions,
Exceptions and Module Stability

John Beresniewicz
Technology Manager
Precise Software Solutions

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec’se Agenda

e Design by Contract
e Assertions
e EXxceptions

e Modular Code

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec:’se

DESIGN BY CONTRACT

A software engineering discipline for
building reliable systems

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec’se Design by Contract

Design by Contract is a powerful metaphor that... makes
It possible to design software systems of much higher
reliability than ever before; the key is understanding that
reliability problems (more commonly known as bugs)
largely occur at module boundaries, and most often
result from inconsistencies in both sides’ expectations.

Bertrand Meyer, Object Success

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec’se Design by Contract

e Software modules have client-supplier relationships

— Client requests and supplier responds

e These relationships can be expressed as contracts
between client and supplier

e Formalizing and enforcing module contracts
promotes software reliability

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

’ Contract elements
Prec/’se

e PRECONDITIONS

— W hat will be true when module is entered?

— Caller’s obligation and module’s benefit

e POSTCONDITIONS

— W hat will be true when module completes?

— Module’s obligation and caller’s benefit

e INVARIANTS

— Anything that should not change as a result of module
execution

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec’se Design by Contract and code stability

e TRUST

— Preconditions allow modules to trust their input data

— Postconditions allow clients to trust module output

e CORRECTNESS

— Explicit contracts require careful consideration

e Trusted data + correct algorithms = solid code

e SAFETY

— Invariant preservation minimizes risk to other modules

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

PL/SQL Call Structure

Precfse

T

plvar = 1234 (pre)
TRUE or FALSE (post) The contract

— =

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec’se PL/SQL and Design by Contract

e Design by Contract = formalizing interfaces

— Preconditions are obligations of calling module
— Postconditions are obligations of called module
— Invariants are preserved system states

e Module IN parm values must obey preconditions

e Module OUT parm and function RETURN values
must satisfy postconditions

— Implemented by module logic

e Exception handling state = invariant violation

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec:’se

ASSERTIONS

Enforcing contracts programmatically

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec’se PL/SQL assertions

e Test a boolean condition and complain if not TRUE

- W hat does “complain” mean?

e PL/SQL assertions implemented as a procedure

- Always executed, unlike some language environments

PROCEDURE Assert (cond IN I N BOOLEAN) ;

Assert (parnl BETWEEN O AND 100);
Assert (plsqltbl.COUNT > 0);
Assert (vbl 2 I'S NOT NULL);

Assert (fcnX > constanty);

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Implest rt pr r
Prec’se Simplest assert procedure

PROCEDURE assert (cond | N BOOLEAN)
| S
BEG N
| F NOT NVL(cond I N, FALSE)
THEN
RAI SE ASSERTFAI L;

END | F;

END assert;

e Complain = raise assertfail exception
— System state change: exception handling

e NULL tests FALSE and raises the exception

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

’ Assert contract preconditions
Prec/’se

e Module calls have contract obligations

e Module parameters implement the contract

- IN parameter values must obey preconditions

— OUT and RETURN values must obey postconditions

e Assert preconditions at module entry points

— Enforces one side of all contracts

e Increased probability all contracts obeyed equates to
Increased code stability

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Packaqgin rtions |
Prec’se ackaging assertions

PACKAGE foo IS
ASSERTFAI L EXCEPTI ON;
PROCEDURE procl (pl iInteger);
END f oo;

PACKAGE BODY foo IS
BEG N
PROCEDURE procl (pl integer) IS
BEG N
assert(pl < 100); -- precondition
[* procl code */
END procl;

e Standard local assertion module in each package
reduces coupling

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec’se Callers can program defensively

BEG N

-- ot her code

BEG N
cal | re(plval);

EXCEPTI ON WHEN ASSERTFAI L
THEN apol ogi ze for plval;

END;

-- nore code

e Assert does not externalize error, catching scope
decides what to do

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Performance considerations
Prec/’se

e Each call to assert is additional overhead

- BUT...assert is package local and code minimal

e Assertion mechanism cannot be turned on/off

— Differences of opinion exist on turning off assertion
checks

e Modules called very freqguently may need attention

— Invariant within large loops

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Turnin ff rtion
Prec’se u g off assertions

e Simply comment them out but leave in code

— They are part of module’s specification

e Only suppress for production performance issue

FUNCTI ON cal | edoften

(pl varchar2, p2 integer) RETURN BOOLEAN
| S
BEQ N
-- assert (LENGIH(pl) BETWEEN 10 AND 100);
-- assert (Bl TAND(p2,3) = 3);

/* code for nodule... */
END cal | edoften;

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec:’se

EXCEPTIONS

Dealing with problems systematically

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

EX iIon fundamental
Prec’se ception fundamentals

e “Something” undesirable or unexpected happens

— We call that something an EXCEPTION

— Either Oracle or application may signal exception

e Processing jumps from execution block to
exception block

— If no exception block, exit to caller’s exception block...

e Declaration exceptions exit to caller

- Not good, a local problem that cannot be dealt with locally

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

’ Exception classes and treatments
Prec/’se

e Anticipated, recoverable and false alarms

— Preserve normal program flow using sub-blocks

e Anticipated, unrecoverable

— Contract violations (Assertfail exceptions)
— Fix modules to obey contracts

e Unanticipated, uncatchable

— Declaration exceptions

e Unanticipated, catchable

— Clean up, log error and fail out for analysis
— DO NOT catch and continue (unless mandatory)

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec:’se

BEG N

BEG N
EXCEPTI ON
END;

BEG N
END;

BEG N
EXCEPTI ON
END;

END;

Nesting, program flow, exceptions

—) X CEPLION OUL

l Exception handled

—) EXCEption out

l Exception handled

m— Normal exit

Use nesting to continue normal program flow

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec’se Catching an exception on purpose
FUNCTI ON | sNunber (txt IN IN varchar)
RETURN BOOLEAN
S
test NUVBER;
BEG N
BEG N
test := TO NUMBER(txt IN);
EXCEPTI ON
WHEN VALUE_ERROR THEN nul | ;
END;
RETURN (test 1S NOT NULL);
END | sNunber ;

e The exception (or not) provides the essential
Information

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

’ Let’s clean that function up some...
Prec/’se

FUNCTI ON | sNunber (txt IN I N varchar)
RETURN BOOLEAN
| S
test NUMBER,
nyBool Ret urn BOCOLEAN : = FALSE;
BEG N
BEG N
test := TO NUMBER(txt IN);
nyBool Return : = TRUE;
EXCEPTI ON
VWHEN VALUE ERROR
THEN nyBool Ret urn : = FALSE;
END;
RETURN nyBool Ret ur n;
END | sNunber ;

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Best Practice: smart N
Prec’se es actice: smart scoping

e WHEN an Oracle exception can be anticipated in a
section of code,

e AND that exception can be safely handled,

e THEN enclose the code in a sub-block and handle
the exception (and only that exception)

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Declaration exception
Prec/’se

PROCEDURE not sogood | S
codevar CHAR(1) := *TOO LONG ;
BEG N

K RAI SE VALUE ERROR;
EXCEPTI ON
VWHEN OTHERS THEN nul [;
END not sogood;
ORA-06502: PL/SQL: numeric or valueerror

Easily preventable by code inspection.

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

’ Declaration time bomb
Prec/’se

PROCEDURE not muchbetter IS
nmycode codes. codeYPE : = * SI ZE?’ ;
BEQ N

K RAI SE VALUE ERROR;
EXCEPTI ON
VWHEN OTHERS THEN nul | ;
END not nuchbetter;
ORA-06502: PL/SQL: numeric or valueerror

Code may break due to change in codes.code
datatype.

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Declaration mystery error
Prec’se ySEELY

PROCEDURE real lybad IS
| ocal var i nteger := sonefcn;
BEG N

/////// RAI SE VALUE ERROR;
EXCEPTI ON
VWHEN OTHERS THEN nul | ;
END real | ybad;
ORA-06502: PL/SQL: numeric or valueerror

Where is the exception generated?

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

B Pr Ice: lar fel
Prec’se est Practice: declare safely

e Initialize declarations with safe assignments only

- Remembering that safe today may not be safe tomorrow

e DO NOT use functions to initialize declarations

— Unless the functions are absolutely trusted

PROCEDURE W | Il notfail IS
| ocal var | NTEGER:

BEGQ N
| ocal var := i nitfunction;
EXCEPTI ON

VWHEN OTHERS THEN nul I ;
END wllnotfail:

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec’se orst practice: catch and ignore

FUNCTI ON badfcn(pl_ I N i nteger)
RETURN BOOLEAN | S
BEQ N
/* some code */
EXCEPTI ON
VWHEN OTHERS THEN RETURN nul [;
END badf cn;

e Masks out ALL errors: callers will think all is fine
when something really bad may have happened

e Returns NULL for BOOLEAN, losing opportunity to
escape problematic three-valued logic of SQL

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec’se Catch, cleanup and RAISE

EXCEPTI ON
VWHEN OTHERS
THEN
| og_error(SQLCODE) ,;
[* local clean up
(e.g.close cursors) */

RAI SE;

e Serious errors should be logged for analysis
e Clean up any resources that persist beyond call
e Re-raise exception to pass on to caller

— “Dead programs tell no lies”

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

' 2
Precﬂ_;e Who should catch exceptions”

A nontrivial question with
many possible answers.

call

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec:’se

MODULAR CODE

Assembling systems from stable components

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

i7@?
Prec’se Why should we modularize”

e Increased contract enforcement

- More interfaces, more asserts, more problems caught

e Code normalization and reuse

— Do things correctly in one place (implement once, call
many)

e Smaller, tighter source code units promote
correctness

— Better algorithm inspection (especially by others)

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Increased contract enforcement
Precfse

I _
__1

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Where should we modularize?
Prec/’se

e At the system level:

— Divide functionality into logical components
— Organize components hierarchically

e Around data:

- Encapsulate (table) data access and transactions
— Shared abstract data types

e Within modules:

— Private package modules to encapsulate shared functions
— Private modules within procedures and functions

Basically everywhere and as much as possible!

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

I m
Prec’se Stable, compact module

FUNCTI ON | sWweekend(l oc_IN IN varchar?2
,date IN I N dat e)
RETURN BOCLEAN | S
tnmp_dy integer;
BEG N
assert(loc ININ(‘US,’ IL));
assert(date IN 1S NOT' NULL);
tnp_dy := TO CHAR(date_IN, ‘D); -- problen?
CASE | oc IN
VWHEN ‘US" THEN RETURN (tnp dy IN (7,1));
VWHEN ‘1L’ THEN RETURN (tnp _dy IN (6,7));
END CASE;
END | sWeekend,;

e Boolean function determines if date i1s weekend
- “Weekend”depends on location

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

’ ISWeekend contract elements
Prec/’se

PRECONDITIONS POSTCONDITIONS
e Date IN not null e RETURN TRUE if date IN is
e Loc IN not null weekend for loc_IN, FALSE
- otherwise

e Loc_IN either ‘US or ‘Il

POTENTIAL PROBLEM?

e Do we REALLY know how TO_ CHAR works (given NLS options)?
e We could introduce a new precondition:

-- Septenber 2,2001 is Sunday
assert (1 = TO CHAR(TO DATE(’ 09: 02: 2001’ ,’ ™M DD: YYYY')
, D));

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Potential problem confirm
Prec’se otential problem co ed

The date format element D returns the number of the day of
the week (1-7). The day of the week that isnumbered 1 is
specified implicitly by the initialization parameter
NLS TERRITORY.

Oracle8i SQL Reference

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Prec[se Summary Points

e Use standardized assertions

— Enforce preconditions in all modules

e Code clearly and carefully

— Postconditions depend on proper algorithms

e Use code inspection

— Clear, documented logic promotes accuracy

e Modularize

— More modules = more contracts

— Small execution sections promote better inspections
e Eliminate exceptions

— Assert, anticipate, avoid invariant violations

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

Resources
Prec/’se

e Object-oriented Software Construction, 2nd Edition
by Bertrand Meyer (Prentice-Hall, 2001)

e Object Success by Bertrand Meyer (out of print)

e The Pragmatic Programmer by Andrew Hunt, et al
(Addison-Wesley, 1999)

e PL/SQL Best Practices by Steven Feuerstein
(O’'Rellly & Associates, 2001)

Copyright (c) 2001 by John Beresniewicz and Precise Software Solutions, Inc.

