
17-DEC-01 Copyright 2001 - SeQuel Consulting 1

Analytical Functions in
ORACLE 8i

By Ed Kosciuszko

SeQueL Consulting
sequelconsulting@msn.com

(973) 226-7835

17-DEC-01 Copyright 2001 - SeQuel Consulting 2

New SQL Features

Post Processing

• scan results to compute function of selected row set

• for each row in result set, apply function to specified rows

• display aggregate with details for easy comparison or
 as summary row

Dynamic Table

• use query to define table in FROM clause

• allow multiple levels of filtering the result set

17-DEC-01 Copyright 2001 - SeQuel Consulting 3

Display sum of salaries per department as portion of the total company salaries.

CREATE VIEW co_tot_sal (total_sal)
AS SELECT SUM(sal) FROM emp

SELECT deptno, (SUM(sal)/total_sal)*100
FROM emp e, co_tot_sal c
GROUP BY deptno, total_sal

Post Processing

Without post-processing

With post-processing

SELECT deptno, (SUM(sal)/SUM(SUM(sal)) OVER ())*100
FROM emp
GROUP BY deptno

Simplistic and Efficient

17-DEC-01 Copyright 2001 - SeQuel Consulting 4

Details & Summary Data

List sum of salaries per group defined by the same job and deptno.

DEPTONO JOB

10 CLERK 1300

10 MANAGER 2450

10 PRESIDENT 5000

20 ANALYST 6000

20 CLERK 1900

20 MANAGER 2975

30 CLERK 950

30 MANAGER 2850

30 SALESMAN 5600

SELECT deptno, job, SUM(sal)
FROM emp
GROUP BY deptno, job

Details can’t be displayed with summary data.

Comparing detail data with summary data requires views.

17-DEC-01 Copyright 2001 - SeQuel Consulting 5

Details & Summary Data

EMPNO DEPTNO JOB SUM_SAL

7934 10 CLERK 1300

7782 10 MANAGER 2450

7839 10 PRESIDENT 5000

7788 20 ANALYST 6000

7902 20 ANALYST 6000

7369 20 CLERK 1900

7876 20 CLERK 1900

7566 20 MANAGER 2975

7900 30 CLERK 950

7698 30 MANAGER 2850

7499 30 SALESMAN 5600

7654 30 SALESMAN 5600

7844 30 SALESMAN 5600

7521 30 SALESMAN 5600

SELECT empno, deptno, job,
 SUM(sal) OVER
 (PARTITION BY deptno, job) AS sum_sal
FROM emp

PARTITION identifies rows to aggregate.
Rows must have the same DEPTNO and
JOB value as the detail row.

17-DEC-01 Copyright 2001 - SeQuel Consulting 6

PARTITIONS

SYNTAX:

SUM (column/expression) OVER ([PARTITION BY col/express, [col/express, …]])

Each detail row can have multiple analytical functions, each with
a different partition.

PARTITION clause is optional. If omitted entire result set is the
partition.

PARTITION can be defined by multiple columns/expressions. If
SQL module has GROUP BY, column/expressions limited to
those on the SELECT list.

17-DEC-01 Copyright 2001 - SeQuel Consulting 7

Internal Operations

SELECT deptno, SUM(sal)/total_sal)
FROM emp e, co_tot_sal c
GROUP BY deptno, total_sal

SELECT empno,
 (sal/SUM(sal) OVER ()) AS percent
FROM emp

Both SQL statements produce the same results but at different costs.

Window [Buffer] operation is the post-processing, scanning
the result set to compute analytical function.

17-DEC-01 Copyright 2001 - SeQuel Consulting 8

Ranking Results
Position in sorted list is different from rank in list.

Ties are given different positions but the same rank.

SELECT empno, sal, RANK() OVER (ORDER BY sal) Rank_Values,
 DENSE_RANK () OVER (ORDER BY sal) Dense_Rank_Values FROM emp

EMPNO SAL RANK DENSE_RANK

7369 800 1 1

 7900 950 2 2

 7876 1100 3 3

 7521 1250 4 4

 7654 1250 4 4

 7934 1300 6 5

 7844 1500 7 6

 7499 1600 8 7

 7782 2450 9 8

 7698 2850 10 9

 7566 2975 11 10

 7788 3000 12 11

 7902 3000 12 11

 7839 5000 14 12

DENSE_RANK does not skip rank
values due to tie.

Highlighted rows have same SAL
value, so same rank. Subsequent
ranks differ

17-DEC-01 Copyright 2001 - SeQuel Consulting 9

RANK () OVER ([PARTITION BY col/express [,col/express, …]]
ORDER BY col/express [,…] [ASC|DESC] [NULLS FIRST|NULLS LAST]

RANK & DENSE_RANK

Syntax:

• RANK does not take parameter

• ORDER BY is mandatory

• ORDER BY clause like that in standard SQL along with option to specify
 collation order and handling of NULLs

• PARTITION is optional. Default is entire result set.

17-DEC-01 Copyright 2001 - SeQuel Consulting 10

Criteria Referencing Analytical Functions

SELECT empno, sal, rank_value
FROM (SELECT empno, sal,

RANK() OVER (ORDER BY sal DESC) AS rank_value
FROM emp)

WHERE rank_value <=2

Top 2 salary earners

FROM query enables us to post-
process a result set.

EMPNO SAL RANK_VALUE

7839 5000 1

7788 3000 2

7902 3000 2

Query returns 3 rows
due to tie for 2nd place.

17-DEC-01 Copyright 2001 - SeQuel Consulting 11

RANK or DENSE_RANK?

RANK and DENSE_RANK only differ on skipping rank values due to tie.
Which is appropriate for which application?

SELECT empno, sal, rank_value
FROM (SELECT empno, sal,
 RANK() OVER (ORDER BY sal DESC) AS rank_value
 FROM emp)
WHERE rank_value <=3 230007902

230007788

150007839

RANK_VALUESALEMPNO

SELECT empno, sal, rank_value
FROM (SELECT empno, sal,
 DENSE_RANK() OVER (ORDER BY sal DESC)

AS rank_value
 FROM emp)
WHERE rank_value <=3 329757566

230007902

230007788

150007839

RANK_VALUESALEMPNO

RANK doesn’t return this row due to tie.

17-DEC-01 Copyright 2001 - SeQuel Consulting 12

RANK or DENSE_RANK?

14

13

12

10

10

 9

 8

 7

 6

 5

 4

 2

 2

 1

RANK

12 8007369

11 9507900

1011007876

 912507654

 912507521

 813007934

 715007844

 616007499

 524507782

 428507698

 329757566

 230007902

 230007788

 150007839

DENSE_RANKSALEMPNO

Use RANK to extract top
or bottom rows based on
sort values.

Use DENSE_RANK to
extract the nth largest or
smallest value.

17-DEC-01 Copyright 2001 - SeQuel Consulting 13

TOP / BOTTOM

SELECT *
FROM
 (SELECT emp_seq , SUM (hours) AS sum_hrs
 FROM time_sheets
 GROUP BY emp_seq)
WHERE 5 >=
 (SELECT COUNT (COUNT (*))
 FROM time_sheets
 GROUP BY emp_seq
 HAVING SUM (hours) > sum_hrs)

Top 5 employees in terms of hours worked. Query must be embedded
in FROM clause in order to
have correlated subquery
access SUM(hours) per
employee.

Execution time = Not in your lifetime!

TIME_SHEETS contains
13,939,925 rows.

Continued>

17-DEC-01 Copyright 2001 - SeQuel Consulting 14

TOP / BOTTOM

SELECT *
 FROM (SELECT emp_seq, SUM(hours),

RANK () OVER (ORDER BY SUM(hours) DESC) AS rnk
FROM time_sheets

 GROUP BY emp_seq)
 WHERE rnk <= 5

Using RANK function instead.

17-DEC-01 Copyright 2001 - SeQuel Consulting 15

TOP / BOTTOM

SELECT emp_seq, hiredate, birthdate
FROM employees e1
WHERE 10 > (SELECT count(*) FROM employees e2
 WHERE e2.hiredate > e1.hiredate
 OR (e2.hiredate = e1.hiredate AND

e2.birthdate > e1.birthdate))

Last 10 employees hired, and if there is a tie, the youngest employee is
ranked lower.

Intuitive??

SELECT *
FROM (SELECT emp_seq, hiredate, birthdate,

RANK() OVER (ORDER BY hiredate DESC, birthdate DESC) rnk
 FROM employees)
WHERE rnk <= 10

Performance: Standard SQL took over 30 minutes. RANK version took
fraction of second.

17-DEC-01 Copyright 2001 - SeQuel Consulting 16

Ranking Subtotals

SELECT DECODE(GROUPING(dname), 1, 'All Departments', dname) AS dname,
 DECODE(GROUPING(job), 1, 'All Jobs', job) AS job,

COUNT(*) "Total Empl", AVG(sal) * 12 "Average Sal",
 RANK() OVER (PARTITION BY GROUPING(dname), GROUPING(job)

ORDER BY AVG(sal) DESC) AS rnk
FROM emp, dept
WHERE dept.deptno = emp.deptno
GROUP BY CUBE (dname, job)
HAVING GROUPING(dname) = 1 OR GROUPING(job) = 1

Average salary by department, all departments, job and all jobs .

 1 24878.571414All JobsAll Departments

 512450 4CLERKAll Departments

 416800 4SALESMANAll Departments

 333100 3MANAGERAll Departments

 236000 2ANALYSTAll Departments

 160000 1PRESIDENTAll Departments

 318800 6All JobsSALES

 226100 5All JobsRESEARCH

 135000 3All JobsACCOUNTING

RNKAverage SalTotal EmplJOBDNAME

17-DEC-01 Copyright 2001 - SeQuel Consulting 17

Windowing Functions
Partition can be broken into subset via windowing clause.

ROWS | RANGE {{UNBOUNDED PRECEDING | <value expression4> PRECEDING}
| BETWEEN {UNBOUNDED PRECEDING | <value expression4> PRECEDING}
AND{CURRENT ROW | <value expression4> FOLLOWING}}

Windowing Clause

Physical vs Logical Windows
• ROWS - physical window

• RANGE – logical window

Window is relative to current row being processed.

17-DEC-01 Copyright 2001 - SeQuel Consulting 18

Logical Window

SELECT empno, sal,
SUM(sal) OVER (ORDER BY sal
 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)

 AS sum_sal
FROM emp

Sum of salaries for employees with a lower or equal salary.

1802529757566

1505028507698

1220024507782

975016007499

815015007844

665013007934

535012507654

535012507521

285011007876

17509507900

8008007369

SUM_SALSALEMPNO

Key to understanding logical windows!

CURRENT ROW = all rows with same
ORDER BY values.

17-DEC-01 Copyright 2001 - SeQuel Consulting 19

Date Intervals

SELECT quote_date, close,
 AVG(close) OVER (ORDER BY quote_date

RANGE INTERVAL '30' DAY PRECEDING) AS prv_30,
 AVG(close) OVER (ORDER BY quote_date
 RANGE BETWEEN CURRENT ROW

AND INTERVAL '30' DAY FOLLOWING) AS fol_30
FROM stock_quotes

Moving average for 30 days is returned in SQL 15, along with the average for the next 30 days
from the current date.

No BETWEEN so this is starting
point. Default end point is curent
row.

REMEMBER: To compare the output of analytical functions, embed query in
FROM clause.

‘n’ DAYS|MONTHS|YEARS PRECEDING|FOLLOWING

Interval Syntax

17-DEC-01 Copyright 2001 - SeQuel Consulting 20

Date Intervals

Functions supplied to convert numeric values/columns to

NUMTODSINTERVAL (n, ‘DAY|HOUR|MINUTE|SECOND’)

NUMTOYMINTERVAL (n, ‘YEAR|MONTH’)

Using the STOCK_QUOTES table, you can specify a logical window as:

RANGE NUMTODSINTERVAL (open, 'DAY') PRECEDING

17-DEC-01 Copyright 2001 - SeQuel Consulting 21

Unwritten Documentation
SELECT emp_seq, effective_date, sal,

MAX(sal) OVER (ORDER BY effective_date DESC
RANGE BETWEEN 1 PRECEDING AND CURRENT ROW)
AS Max_Sal

FROM sal_history

What does ‘1 PRECEDING’ mean in a logical window?

1000100022-DEC-001009

100040022-DEC-001007

100010022-DEC-001001

20020001-JAN-011015

20015001-JAN-011002

20010001-JAN-011003

20020001-JAN-011001

30030006-JAN-011015

30020006-JAN-011003

30030006-JAN-011001

50050011-JAN-011015

MAX_SALSALEFFECTIVE_DATEEMP_SEQ

Shouldn’t MAX
be 500?Note that

difference in
days.

17-DEC-01 Copyright 2001 - SeQuel Consulting 22

Unwritten Documentation

SELECT emp_seq, effective_date, sal,
MAX(sal) OVER (ORDER BY effective_date DESC

RANGE BETWEEN 5 PRECEDING AND CURRENT ROW)
AS Max_Sal

FROM sal_history

Recall difference in
dates was 5 days?

1000100022-DEC-001009

100040022-DEC-001007

100010022-DEC-001001

30020001-JAN-011015

30015001-JAN-011002

30010001-JAN-011003

30020001-JAN-011001

50030006-JAN-011015

50020006-JAN-011003

50030006-JAN-011001

50050011-JAN-011015

MAX_SALSALEFFECTIVE_DATEEMP_SEQ

When ORDER BY
on date column, and
logical window used,
‘n’ PRECEDING
means ‘n’ DAYS
PRECEDING.

17-DEC-01 Copyright 2001 - SeQuel Consulting 23

Unwritten Documentation

SELECT emp_seq, effective_date, sal,
MAX(sal) OVER (ORDER BY sal DESC
 RANGE BETWEEN 1 PRECEDING AND CURRENT ROW)

AS Max_Sal
FROM sal_history

ORDER BY numeric column
Logical window

So what does the 1 mean?
The 1 means units of SAL .

So if CURRENT contains SAL of 100, the RANGE includes
rows with SAL BETWEEN 99 and 101.

17-DEC-01 Copyright 2001 - SeQuel Consulting 24

Unwritten Documentation

SELECT emp_seq, effective_date, sal,
MAX(sal) OVER (ORDER BY sal DESC
RANGE BETWEEN 100 PRECEDING AND CURRENT ROW)

 AS Max_Sal
FROM sal_history

Example increases range to illustrate proper interpretation.

20010022-DEC-001001

20010001-JAN-011003

20015001-JAN-011002

30020001-JAN-011001

30020001-JAN-011015

30020006-JAN-011003

40030006-JAN-011015

40030006-JAN-011001

50040022-DEC-001007

50050011-JAN-011015

1000100022-DEC-001009

MAX_SALSALEFFECTIVE_DATEEMP_SEQ

The range
now
includes
other rows
producing
different
MAX
values

17-DEC-01 Copyright 2001 - SeQuel Consulting 25

Physical Windows
Simple

• Use ROWS instead of RANGE.

• Specify exact number of rows preceding and following.

SELECT empno, job,
MAX(sal) OVER (ORDER BY job ROWS 1 PRECEDING) AS max_job

FROM emp

• Rows sorted by JOB

• Window includes current row and 1 row prior in the sort order

• ‘1 PRECEDING’ is start point

• End point defaults to current row

17-DEC-01 Copyright 2001 - SeQuel Consulting 26

FIRST_VALUE - LAST_VALUE
vs.

LEAD - LAG

FIRST_VALUE (col/express) – returns first value of “col/express” from window

LAST_VALUE (col/express) – returns last value of “col/express” from window

LEAD (col/express, [offset, [default]]) – returns value of col/express from row after
current row offset by “offset” (default=1) from partition

LAG (col/express, [offset, [default]]) – returns value of col/express from row before
current row offset by “offset” (default=1) from partition

LEAD and LAG do not need window clause. Offset and
function name determines which row to access

17-DEC-01 Copyright 2001 - SeQuel Consulting 27

SELECT emp_seq, sal, effective_date, sal - LAST_VALUE(sal) OVER
 (PARTITION BY emp_seq ORDER BY effective_date DESC
 ROWS BETWEEN CURRENT ROW AND 1 FOLLOWING) AS raise,
 MIN(effective_date) OVER (PARTITION BY emp_seq ORDER BY effective_date) AS first_sal
FROM sal_history

LAST_VALUE

01-JAN-01001-JAN-012001015

01-JAN-0110006-JAN-013001015

01-JAN-0120011-JAN-015001015

22-DEC-00022-DEC-0010001009

22-DEC-00022-DEC-004001007

01-JAN-01001-JAN-011001003

01-JAN-0110006-JAN-012001003

01-JAN-01001-JAN-011501002

22-DEC-00022-DEC-001001001

22-DEC-0010001-JAN-012001001

22-DEC-0010006-JAN-013001001

FIRST_SALRAISEEFFECTIVE_DATESALEMP_SEQ

Retrieve history of raises

MIN used to list the first
SAL_HISTORY row per
employee, so that we can filter
out misleading zero raises.
Embed query in FROM clause
and add criterion “effective_date
!= first_sal”

Continued>

17-DEC-01 Copyright 2001 - SeQuel Consulting 28

Performance Comparison

SELECT s2.effective_date, s2.sal, s2.sal – s1.sal AS raise
FROM sal_history s1, sal_history s2
WHERE s1.emp_seq = s2.emp_seq
AND s1.effective_date = (SELECT MAX(effective_date) FROM sal_history

WHERE emp_seq = s2.emp_seq
AND effective_date < s2.effective_date)

Listing raise history with standard SQL.

SQL 1:/TUTORIAL is the
standard SQL;

SQL 2:/TUTORIAL uses
analytical function.

17-DEC-01 Copyright 2001 - SeQuel Consulting 29

Default Window

RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

SELECT deptno, ename, sal, SUM(sal) OVER () AS tot_sal
FROM emp

Logical Window Sum over entire result set

SELECT deptno, ename, sal, SUM(sal) OVER (ORDER BY sal) AS tot_sal
FROM emp

ORDER BY w/o window
clause means default window

17-DEC-01 Copyright 2001 - SeQuel Consulting 30

RATIO_TO_REPORT
• Computes the percentage of the column/expression to the total of
column/expression for all rows in the partition.

• ORDER BY is not permitted, which in turns means a window clause is not
permitted.

SELECT emp_seq, proj_seq,
 SUM(hours) AS sum_hrs,
 RATIO_TO_REPORT(SUM(hours))

OVER (PARTITION BY emp_seq) AS ratio
FROM time_sheets GROUP BY emp_seq, proj_seq

18112941

18102934

.2758620698132921

.41379310312112921

.3103448289102921

112112907

.48112903

.612102903

RATIOSUM_HRSPROJ_SEQEMP_SEQ

17-DEC-01 Copyright 2001 - SeQuel Consulting 31

CASE Function

CASE WHEN <criteria> THEN <output> WHEN <criteria> THEN <output>
ELSE <output> END

CASE WHEN sal > 3000 OR JOB = ‘PRESIDENT’ THEN 300 ELSE sal*.2 END

CASE WHEN hiredate < ’01-JAN-97’ THEN ‘Retired’ END

CASE WHEN sal > (SELECT avg(sal) FROM emp) THEN 'above average' END

• If 1st WHEN is FALSE, 2nd WHEN is tested

• Only one ELSE

• Criteria can be any valid SQL criteria, including subquery

17-DEC-01 Copyright 2001 - SeQuel Consulting 32

SELECT CASE WHEN sysdate-inv_date > 90 THEN '90 days overdue'
 WHEN sysdate-inv_date > 60 THEN '60 days overdue'
 WHEN sysdate-inv_date > 30 THEN '30 days overdue‘

 WHEN sysdate-inv_date > 0 THEN 'less than 30 days overdue' END AS period,
SUM(amount) AS amount
FROM invoices
WHERE paid_date IS NULL
GROUP BY CASE WHEN sysdate-inv_date > 90 THEN '90 days overdue‘
 WHEN sysdate-inv_date > 60 THEN '60 days overdue‘
 WHEN sysdate-inv_date > 30 THEN '30 days overdue‘
 WHEN sysdate-inv_date > 0 THEN 'less than 30 days overdue' END

CASE Function
List unpaid invoices by days overdue.

10302less than 30 days overdue

101290 days overdue

625560 days overdue

430130 days overdue

AMOUNTPERIOD

17-DEC-01 Copyright 2001 - SeQuel Consulting 33

CASE Vs. DECODE

Previous query is implemented with DECODE.

SELECT DECODE (SIGN(sysdate-inv_date – 90), -1,
DECODE(SIGN(sysdate-inv_date-60),-1,

 DECODE(SIGN(sysdate-inv_date-30), -1, ‘less than 30 days overdue’,
’30 days overdue’),’60 days overdue’),’90 days overdue’) AS period,
SUM(amount) AS amount

FROM invoices
GROUP BY DECODE (SIGN(sysdate-inv_date – 90), -1,

DECODE(SIGN(sysdate-inv_date-60),-1,
DECODE(SIGN(sysdate-inv_date-30), -1, ‘less than 30 days overdue’,

’30 days overdue’),’60 days overdue’),’90 days overdue’)

 Complex to specify, and difficult to read

17-DEC-01 Copyright 2001 - SeQuel Consulting 34

CUME_DIST

• Determines the number of values in a sorted list that came before or are
equal to the current value.

•ORDER BY is mandatory, since a sorted list is required

CUME_DIST(x) = number of values (different from, or equal to, x) in set
coming before x in the specified order/ N

SELECT student_id, score,
 CUME_DIST() OVER

(ORDER BY score)
FROM scores

1985

.9166666679211

.8333333338710

.75858

.75852

.583333333769

.5726

.4166666676912

.333333333633

.25587

.166666667504

.083333333451

CUME_DISTSCORESTUDENT_ID

