
What the SQL is Going
On Out Here?

New Book:
ISBN: 0-7897-2369-7

www.amazon.com

Our Mission

To enable today’s businessesTo enable today’s businesses
to achieve 24x7 operationto achieve 24x7 operation

of mission-critical applicationsof mission-critical applications

The eBusiness
Infrastructure Landscape

Application/Database

DEVELOP/DEPLOYDEVELOP/DEPLOY MANAGEMANAGEHP
Cisco
Sun
EMC

Veritas
Legato

Hardware/Network

CA
Tivoli
BMC

Operating System

A
p
p
s

A
p
p
s

D
B

D
B Quest Software

Quest Software

The Complete Quest Solution

High AvailabilityHigh AvailabilityHigh Availability

Database Performance ManagementDatabase Performance ManagementDatabase Performance Management

DB Server DevelopmentDB Server DevelopmentDB Server Development

DB & Application MonitoringDB & Application MonitoringDB & Application Monitoring

Application OffloadingApplication OffloadingApplication Offloading

DB Change ManagementDB Change ManagementDB Change Management

DEVELOP/DEPLOYDEVELOP/DEPLOY MANAGEMANAGE

Agenda� SQL Issues

� Tuning Methodology

� How to find Poorly Performing SQL

� The Oracle Optimizers

� Understanding the Explain Plan

� Oracle Tuning Tools

� SQL Do’s and Don’ts

SQL Issues

� SQL Rage!
– 20% of SQL is consuming 80% of the resources
– Poorly performing SQL statements infuriates the

staff!

SQL Issues (continued)
Where Are These SQL

Statements Coming From?
� SQL, while easy to understand conceptually, can be difficult to

grasp as it relates to performance.

� Biggest problem, non-trained application programmers and/or
end-users are expected to deliver highly tuned SQL.

� High demand for new applications & RAD techniques causes
sloppiness.

� Not enough time or resources to
examine what the SQL is really doing.

Tuning Methodologies
 Top-down & Bottom-up

� Top Down
– Reacting to problem SQL
– End users using 3rd party tools
– No tuning at the development level
– No review of code

Tuning Methodologies
Top-down & Bottom-up

� Bottom-up
– Build it right the first time

– Know the data and design

– Quickly evaluate alternatives - rule, first, or all

– Add hints based on database stats

– Execute & compare

– Determine which plans are affected by a database
change

Tuning Methodology

Operating System

Oracle Database

App Design

SQL Code

Tuning Methodology
In Action

How to find Poorly
Performing SQL

� Monitoring
� Scripts

– Tim Gorman www.sagelogix.com
– Top Offensive SQL Statements

• Oracle Professional June 2000

� Tools
� Luck...

How to find Poorly
Performing SQL

How to find Poorly
Performing SQL

How to find Poorly
Performing SQL

� Diagnoses Source of I/O Bottlenecks:
– Poor SQL
– Poor Layout

� Quickly identify disk hot spots
� Drill down to actual SQL statements
� Identify frequently accessed objects
� Soon: History, I/O Trends, Capacity Planning

Storage Expert

How to find Poorly
Performing SQL

How to find Poorly
Performing SQL

1: / ***
2: * Fi l e: top_stmt2. sql
3: * Type:SQL*Pl us scri pt
4: * Author: Ti m Gorman (SageLogi x, Inc.)
5: * Date:04-Oct-99
6: *
7: * Descri pti on:
8: *DDL scri pt to create the TOP_STMT2 stored procedure.
9: *
10: * Modi fi cati ons:
11: ***/
12:
13: create or repl ace procedure top_stmt2
14: (
15: i n_top_count i n number defaul t 20,
16: i n_max_di sk_reads i n number defaul t 10000,
17: i n_max_buffer_gets i n number defaul t 100000
18:) i s
19: --
20: cursor get_top_stmts(in_dr i n number, i n_bg i n number)
21: i s
22: sel ect/ *+ rul e */
23: substr(sql _text, 1, 60) sql _text,
24: mi n(address) address,
25: sum(abs(di sk_reads)) di sk_reads,
26: sum(abs(buffer_gets)) buffer_gets,
27: sum(abs(sorts)) sorts,
28: sum(abs(executi ons)) executi ons,
29: sum(abs(l oads)) l oads,
30: count(*) cnt,
31: ((sum(abs(di sk_reads))*100)+sum(abs(buffer_gets))) / 1000
32: factor
33: from sys. v_$sql area
34: group by substr(sql _text, 1, 60)
35: havi ng sum(abs(di sk_reads)) > i n_dr
36: and sum(abs(buffer_gets)) > i n_bg
37: order by factor desc;

Tuning in Production: Recon
� Historical 24x7 information

– From a minute to a full week--intuitive navigation
– Detailed info on SQL, users, programs and clients
– Detailed resource consumption and resource waits
– Analysis graphs and direct entry into SQL tuning

� Live Diagnostics
– What sessions are active/inactive and what are they doing

NOW
– Trace session with full SQL history and detailed stats per

SQL
� Zero Oracle overhead, negligible server overhead

Historical Analysis and Diagnostics

(a) View workload breakdown for last hour, day, week…

(b) Select interesting time frame

(c) Select Grid view

Historical Analysis and Diagnostics

(d) View the SQL statements using resources at 1:39PM…

(e) Or check the programs that were running at the time…

Historical Analysis and Diagnostics:
Drilldowns

Easily identify the statement (or program) waiting for locks

The same is available for CPU, I/O, Network, Latches and Other Waits

Live Diagnostics

No Oracle connection, Zero Overhead

Sessions, SQL currently executed, resource consumption and colored thresholds…

Current workload distribution

Available indicators

Live Diagnostics Drilldowns

SQL statements executed by session

Comprehensive statistics for the session

Breakdown of session activity, refreshed every second

OnWire’s Non-Intrusive
Solution

Router

ClientsNetwork Switch

Servers

OnWire Engine Data Center

NetRecorder
Console

HostRecorder Collector

� Implemented as a Kernel Streams driver
– NO Overhead

• No context switching
• No expensive User mode processing
• No polling
• No contention
• No agents

– 10 minute install (< 25K size)
– No network overhead

OnWire 3.1 Features

� HostRecorder
� Built-in Forms End-User Transactions
� Concurrent Manager Support
� Advanced Locking Diagnostics
� Support for Web and PLSQL Table Arrays
� Normalized Performance Metrics
� Identify and classify resource utilization
� Full Lifecycle Tuning Support w/SQLAB

� Oracle Optimizer gives you choices:
– Rule-based

• Based on a set of rules (Index existence, SQL coding)

• Does NOT consider object statistics

– Cost-based
• Uses object statistics (from ANALYZE command)

• User has more control in tuning
• 2 goals:

– First row: response time for interactive apps (OLTP)
– All rows: throughput for batch processing (DSS)

• Makes Assumptions

– Hints
• Cost Based ‘suggestions’, not always used by Oracle!
• Can be specified in combinations

The Oracle Optimizers

The Oracle Optimizers
Selecting a Mode

� Database Level
– init.ora OPTIMIZER_MODE parameter
– RULE, COST, or CHOOSE* (default)

� Session Level
– ALTER SESSION SET OPTIMIZER_GOAL= < >

• < > = RULE, FIRST_ROWS, ALL_ROWS, CHOOSE

� SQL Level
– HINT RULE, FIRST_ROWS, ALL_ROWS

The Oracle Optimizers
Rule-based Optimizer

Rank Where Clause Rule
1 ROWID = constant
2 unique indexed column = constant
3 entire unique concatenated index = constant
4 entire cluster key = cluster key of object in same cluster
5 entire cluster key = constant
6 entire nonunique concatenated index = constant
7 nonunique index = constant
8 entire noncompressed concatenated index >= constant
9 entire compressed concatenated index >= constant
10 partial but leading columns of noncompressed concatenated index
11 partial but leading columns of compressed concatenated index
12 unique indexed column using the SQL statement BETWEEN or LIKE options
13 nonunique indexed column using the SQL statement BETWEEN or LIKE options
14 unique indexed column < or > constant
15 nonunique indexed column < or > constant
16 sort/merge
17 MAX or MIN SQL statement functions on indexed column
18 ORDER BY entire index
19 full table scans

The Oracle Optimizers
Cost-based Optimizer

Oracle hints include:
/*+ALL_ROWS*/ Optimize SQL for best throughput
/*+AND_EQUAL*/ Use index merging on specified tables
/*+CLUSTER*/ Use a cluster scan for a specified table
/*+COST*/ Use cost-based optimizer always
/*+FIRST_ROWS*/ Optimize SQL for best response times
/*+FULL*/ Use a full-table scan
/*+HASH*/ Use a hash-search method
/*+INDEX*/ Force the use of a specified index
/*+STAR*/ Force Star join, between a large table with

concatenated keys and smaller tables
/*+ORDERED*/ Use the from clause join sequence
/*+ROWID*/ Use ROWID access method
/*+USE_MERGE*/ Use sort merge join technique
/*+USE_NL*/ Use nested loop join technique
/*+USE_NOCACHE*/ Don’t put the data in the buffers
/*+USE_HASH*/ Use a hash join
/*+USE_CONCAT*/ Use multiple indexes for or conditions

& MORE

Helpful INIT.ORA Parameters

� Database File Multi Block Read Count
– Both rule and cost

� Hash Multi Block IO Count
� Hash Join Enabled
� Hash Area Size

– Cost only
� Sort Area Size

– Both rule and cost

Helpful 8i INIT.ORA settings

� Optimizer Index Caching
� Optimizer Index Cost Adjustment

– adjusts for low hit ratio assumption

Index Usage

� Rule Optimizer
– Follows rules
– Lower clustering factor,

better rule selection
– No functions in index
– Use a function to NOT

use an index

� Cost Optimizer
– Follows stats
– 8i supports function-

based indexes
– can use HINTS

Where comm * 1.1 > 1000 vs

Where comm > 1000/1.1

Clustering Factor

� Is the relationship between the number of index
blocks vs the number of related data blocks

� Low is good.
� Lower Clustering Factors:

– Sort data into index order prior to loading
– Use primary key (and in sorted order again)

The Oracle Optimizers
Cost-based Optimizer

Cost-based Assumtions

� Can use Cost Optimizer even if no stats
� Assumes even data distribution
� Assumes certain row counts
� Assumes low buffer hit ratio
� Assumes lots of users

Cost Optimizer Statistics

� Analyze <object> compute statistics
– Collects:

• Number of blocks
• Number of rows
• Indexes:

– Granularity of Indexes (clustering factor)
– Distinct values
– Number of blocks per leaf

• Histograms - if uneven data distribution

Understanding Explain Plans

� Understanding Explain Plans

– Is a Necessity to Tuning SQL Statements

– Shows you the choices made by either optimizer

– Can be difficult to interpret

– Indenting and tools greatly aid!

Understanding Explain Plans
Driving Table

� Rule
– Based on existence of indexes or LAST table in

FROM clause or first NESTED SELECT
� COST - FIRST ROWS

– Based on unique indexes
– Tries to avoid Full Scans and Sorts

� COST - ALL ROWS
– Based on total rows returned

� Cost - Ordered Hint

Understanding Explain Plans
Syntax

SQL>

SQL> EXPLAIN PLAN FOR

 2 select ename

 3 from emp

 4 where deptno in (select deptno from dept where deptno = 10);

Explained.

SQL> SELECT operation, options, object_name, id, parent_id

 2 from plan_table;

OPERATION OPTIONS OBJECT_NAME ID PARENT_ID

------------------------------ -------------------- ------------------------------ --------- ---------

SELECT STATEMENT 0

NESTED LOOPS 1 0

 INDEX UNIQUE SCAN PK_DEPT 2 1

 TABLE ACCESS FULL EMP 3 1

Understanding Explain Plans
Syntax

Explain Symbol Description
AND-EQUAL Index values will be used to join rows.
CONCATENATION SQL statement UNION command.
FILTER FILTERs apply 'other criteria' in the query to further qualify the matching rows.

The 'other criteria' include correlated subqueries, and HAVING clause.
FIRST ROW SQL statement will be processed via a cursor.
FOR UPDATE SQL statement clause ‘for update of’ placed row level locks on affected rows.
INDEX (UNIQUE) SQL statement utilized a unique index to search for a specific value.
INDEX (RANGE SCAN) SQL statement contains a nonequality or BETWEEN condition.
HASH JOIN SQL statement initiated a hash-join operation.
MERGE JOIN SQL statement references two or more tables, sorting the two result sets being

joined over the join columns and then merging the results via the join columns.
NESTED LOOPS This operation is one form of joining tables. One row is retrieved from the row

source identified by the first (inner) operation, and then joined to all matching
rows in the other table (outer).

NONUNIQUE INDEX (RANGE SCAN) The RANGE SCAN option indicates that ORACLE expects to
return multiple matches (ROWIDs) from the index search

PARTITION (CONCATTENATED) SQL statement will access a partitioned object and merge the
retrieved rows from the accessed partitions.

PARTITION (SINGLE) SQL statement will access a single partition.
PARTITION (EMPTY) The SQL statement makes reference to an empty partition.
SORT (ORDER BY) SQL statement contains an ORDER BY SQL command.
SORT (AGREGATE) SQL statement initiated a sort to resolve a MIN or MAX function.
SORT (GROUP BY) SQL statement contains a GROUP BY SQL command.
TABLE ACCESS (FULL) All rows are retrieved from the table without using an index.
TABLE ACCESS (BY ROWID) A row is retrieved based on ROWID
TABLE ACCESS (CLUSTER) A row is retrieved from a table that is part of a cluster.
UNION SQL statement contains a DISTINCT SQL command.

Understanding Explain Plans
Syntax

� Nested Loop Join

– driving table

– Default order(rule)

� Merge Scan Join

– sort & match

� Hash Join (7.3)

– Full scans with no
sorts

– Join column to row
address

� Nested Loop Join
– small portion accessed from a large table & joined

from a small portion of the second table

� Merge Scan Join
– large portion of rows are being joined

� Hash Join
– large portion with a lot of memory

Understanding Explain Plans

Understanding Explain Plans

C P U T im e (s e c) - P a r s e & E x e c u te
P e r c e n ta g e N e s te d L o o p M e r g e J o in H a s h J o in

1 0 0 1 0 3 .2 6 6 5 .6 3 2 5 .0 6
5 0 7 9 .2 6 5 4 .3 4 1 9 .1 6
2 5 3 9 .0 1 4 5 .8 5 1 2 .4 0
1 0 1 5 .2 2 4 2 .2 6 8 .9 9

5 8 .1 0 3 4 .3 3 8 .5 0
3 4 .5 4 3 4 .2 5 7 .9 5
2 3 .1 5 3 3 .4 7 7 .6 3
1 1 .7 4 3 3 .5 9 7 .6 0

Understanding Explain Plans
Tips

� Use bind variables
– Helps SQL parsing/processing

� Merging Indexes
– Oracle will process up to 5
– Use AND-EQUAL hint to select and limit

� Nested Selects vs Joins vs UNION ALL
– Use UNION ALL syntax where possible
– Cost optimizer might change NS to Joins

Oracle Tuning Tools

� Explain Table
� TKPROF
� GUI Tools

– SQL Navigator
– TOAD
– OEM SQL Analyze
– SQLab

Oracle Tuning Tools
Explain Plan

SQL>

SQL> EXPLAIN PLAN FOR

 2 select ename

 3 from emp

 4 where deptno in (select deptno from dept where deptno = 10);

Explained.

SQL> SELECT operation, options, object_name, id, parent_id

 2 from plan_table;

OPERATION OPTIONS OBJECT_NAME ID PARENT_ID

------------------------------ -------------------- ------------------------------ --------- ---------

SELECT STATEMENT 0

NESTED LOOPS 1 0

 INDEX UNIQUE SCAN PK_DEPT 2 1

 TABLE ACCESS FULL EMP 3 1

Oracle Tuning Tools
TKPROF

select * from tutorial.cur_emp_status

 call count cpu elapsed disk query current rows

 ------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.02 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.23 0.25 11 1051 3 15

 ------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 0.25 0.27 11 1051 3 15

Oracle Tuning Tools -TKPROF
Rows Execution Plan

------- ---

 0 SELECT STATEMENT HINT: CHOOSE

 137 FILTER

 137 NESTED LOOPS

 137 NESTED LOOPS

 137 NESTED LOOPS

 49 NESTED LOOPS

 23 NESTED LOOPS

 15 TABLE ACCESS HINT: ANALYZED (FULL)
OF 'EMPLOYEES'

 23 TABLE ACCESS HINT: ANALYZED
(CLUSTER) OF

 'SAL_HISTORY'

Rows Execution Plan

------- ---

 137 TABLE ACCESS HINT: ANALYZED (BY ROWID) OF 'JOB_CODES'

 137 INDEX HINT: ANALYZED (UNIQUE SCAN) OF 'I_JOBS' (UNIQUE)

 137 TABLE ACCESS HINT: ANALYZED (BY ROWID) OF 'DEPARTMENTS'

 137 INDEX HINT: ANALYZED (UNIQUE SCAN) OF 'I_DEPTS' (UNIQUE)

 23 SORT (AGGREGATE)

 23 TABLE ACCESS HINT: ANALYZED (CLUSTER) OF 'DEPT_HISTORY'

 15 INDEX HINT: ANALYZED (UNIQUE SCAN) OF 'I_EMP_EMPNO'

 (CLUSTER)

 23 SORT (AGGREGATE)

 23 TABLE ACCESS HINT: ANALYZED (CLUSTER) OF 'JOB_HISTORY'

 15 INDEX HINT: ANALYZED (UNIQUE SCAN) OF 'I_EMP_EMPNO'

 (CLUSTER)

Oracle Tools - SQLab XPert

Oracle Tools - SQLab XPert

Oracle Tools - SQLab XPert

Oracle Tools - SQLab XPert
Compare Plans

Oracle Tools - SQLab XPert
Compare Performance

Oracle Tools - Plan Stability

� Stored Outlines
– Is a method to guarantee that a certain Execution Plan will be used

for a particular SQL statement
– Oracle can specifically create Stored Outlines -or- it can create one

for each SQL statement presented
• CREATE OR REPLACE <outline> FOR CATEGORY <category> ON

<sql statement>;
• system/session parameter CREATE_STORED_OUTLINES = <TRUE,

FALSE, ‘category name’ NOOVERIDE>
– Must have ‘CREATE ANY OUTLINE’ permissions

Oracle Tools - Plan Stability

� Oracle will use a Stored Outline unless:
– system/session parameter

USE_STORED_OUTLINES = False
– mismatch on SQL text including Hints

� How it works:
– Oracle uses OL$ and OL$HINTS tables

• see also USER_OUTLINES, USER_OUTLINE_HINTS
– Stored indefinitely unless explicitly removed
– system/session parameter

USE_STORED_OUTLINES = TRUE or <category>

Oracle Tools - Plan Stability

� Stored Outline Management
– Packages DROP_UNUSED, DROP_BY_CAT,

UPDATE_BY_CAT
– Moving Outlines:

• EXP OUTLN/OUTLN FILE = <file name> TABLES = ‘OL$’
‘OL$HINTS’ SILENT=Y [WHERE CATEGORY=<category>]

• IMP OUTLN/OUTLN FILE=<file name> TABLES = ‘OL$’
‘OL$HINT’ IGNORE=Y SILENT=Y

• see p 7-32 Oracle8i Tuning Guide

SQL Do’s and Don’ts

� Avoid using the HAVING clause.

– Use WHERE clause

– The HAVING statement filters selected rows only after all
of the rows have been retrieved.

� Use the NOT EXISTS statement in place of a NOT IN
statement.

� Use joins in place of EXISTS.

� Use EXISTS in place of DISTINCT.

SQL Do’s and Don’ts

� AVOID doing calculations on indexed WHERE columns

– the optimizer will use a full-table scan
• Oracle8i has new function-based index feature

� Depending on the types of SQL statement issued, think about
using a concatenated index.

� Avoid using NOT on indexed columns(precludes using a
index).

� Use WHERE instead of ORDER BY when an index is used.

� Bind variables Vs. constants

Summary

� Try to use good database design throughout
all applications

� Monitor
� Understand your options

– Optimizer Modes

– Join conditions

� Use GUI Tuning Tools

� Don’t Let SQL RAGE Happen to you!

Our Experts Wrote the Books...

Questions?

Dan Hotka is a Director of Database Field Operations for Quest Software. He has over 21 years in the
computer industry and over 16 years experience with Oracle products. He is an acknowledged Oracle
expert with Oracle experience dating back to the Oracle V4.0 days. He has just completed Oracle8i from
Scratch by Que and has co-authored the popular books Oracle Unleashed, Oracle8 Server Unleashed,
Oracle Development Unleashed by SAMS and Special Edition using Oracle8/8i by Que, is frequently
published in Oracle Professional by Pinnacle Publications, and regularly speaks at Oracle conferences and
user groups around the world. Dan can be reached at dhotka@earthlink.net or dhotka@quest.com .

Bibliography:

Tim Gorman, www.sagelogix.com

Top Offensive SQL Statements, Oracle Professional June 2000; A Pinnacle Publication

Oracle8i from Scratch by Dan Hotka; A Que Publication

Oracle8i SQL Tuning Guide (Oracle Doc Set)

w w w . q u e s t . c o m

