
PL/SQL Practicum:
On Fetching and Explaining SQL from the SGA

John Beresniewicz

Technology Manager

Precise Software Solutions

Design by Contract

Design by Contract is a powerful metaphor for
software construction. It leads developers and
managers to view the construction of a software
system as consisting of a large number of
contract decisions, large and small, between
modules cooperating toward a common goal.

Bertrand Meyer, Object Success

Design by Contract

� Preconditions: what must be true upon entering the
module?

� Postconditions: what does the module promise will
be true upon exit?

� Invariants: what does the module promise not to
change?

SQL in the SGA

� Oracle caches SQL in library cache
– Query plan and other execution info

� Pointed to by hash_value and address

� Pointers located in several (V$) places
– Full text available in V$SQLTEXT

V$ pointers to cached SQL

� V$SQLAREA
– Aggregate resource metrics across all child cursors

– Expensive due to use of group functions

– Problem: Only 1000 characters of SQL text

� V$SESSION
– Current and previous SQL statement for session

� V$SQL
– Same as V$SQLAREA but not aggregated over

children, less expensive to query

Piecing SQL text together

� V$SQLTEXT
– Full SQL statement cut into ordered 64 byte pieces

– Concatenate SQL_TEXT column value for successive
pieces, ordered by PIECE column

– Address and Hash_value are the key

� How about a PL/SQL function to do this?
– Accept address/hash and return SQL text

FUNCTION SQLtxt
 (hash_IN IN v$sqltext.hash_value%TYPE
 ,addr_IN IN v$sqltext.address%TYPE)
RETURN VARCHAR2

Function SQLtxt (v1)

� Can be used in SQL statements

� Anchored parameter declarations

� Returns PL/SQL varchar2 (up to 32767 chars)

� Cursor FOR loop driven by module parameters

The driving cursor

� Cursor-for loop on this does cursor does it all

 CURSOR sqlpiece_cur
 IS
 select piece, sql_text
 from v$sqltext
 where hash_value = hash_IN
 and address = addr_IN
 order by piece;

SQLtxt contract elements

� Return full text of SQL identified by IN
parameters (or NULL)

� Callable from SQL statements
– WNDS purity inside pre-8i packages

� Not raising exceptions is an extremely valuable
invariant

– Exceptions change the “state” of the system

The “problem” that isn’t…yet

� SQL text could exceed 32K in length
– Could it really?

� Function SQLtxt could raise exception
– Should we catch and process?

– Should we process and not raise?

� Calling programs may need to handle
– Exception decreases module usability

1st strategy: quick elimination

� Error messages will fit into VARCHAR2

� Function will not raise an exception

� However, we have violated contract

EXCEPTION
 WHEN OTHERS THEN
 temp_sqltxt := SQLERRM(SQLCODE);
 RETURN temp_sqltxt;

Better exception externalization

� Debug procedure logs time-stamped errors

� Returning NULL is within contract

� However, module dependence is introduced

EXCEPTION
 WHEN OTHERS THEN
 temp_msg := SQLERRM(SQLCODE);
 debug(SYSDATE,temp_msg);
 RETURN NULL; -- or temp_sqltxt;

Avoiding the exception

� Catch exception and return whatever we have to
that point

� Allow caller to control how much text to return
up to 32K

� Both solutions can return truncated SQL

� Cannot explain truncated SQL, problem?

� Should we return NULL instead?

FUNCTION SQLtxt
 (hash_IN IN sys.v_$sqltext.hash_value%TYPE
 ,addr_IN IN sys.v_$sqltext.address%TYPE
 ,maxlength_IN IN INTEGER := 32767)
RETURN VARCHAR2

Function SQLtxt (v2)

� New parameter maxlength
– Caller controls size of return varchar2

– Defaults to existing (v1) signature and behavior

� Eliminate synonym-based variable anchoring

New variables = new contract

� Precondition: Maxlength_IN should be NOT
NULL integer between 0 and 32767
� Do not want a possible new exception

– Force the precondition to be true

-- force maxlength between 0 and 32767
maxlength := GREATEST(
 LEAST(NVL(maxlength_IN,0)
 ,32767)
 ,0);

SQLtxt v2 Function Body

� Open cursor-for loop on sqlpiece_cur
– Add whole piece and track total length if this will not

exceed maxlength

– Otherwise add substring until maxlength reached

� RETURN entire SQL text or maxlength size
substring of it

� Brute-force implementation, not elegant
– But… it meets design criteria

Problems with v2

� Boundary analysis: maxlength=1 and SQL size
32767?

– Loop is run 32766 times too many!

� Cursor-for is the wrong loop
– It was right for v1, where it originated

� Solution: simple loop with explicit exit when SQL
reaches maxlength size

Function SQLtxt (v3)

� Simple LOOP on sqlpiece_cur

� Exit condition reads clearly
– No more pieces OR textsize = maxlength

� Lesson: added features may induce changes to
trusted code sections

� The IF…END IF text size tracking is ugly

Function SQLtxt (v4)

� Replace ugly IF…END IF with simple assignment

� Local function cur_length returns size of text so far
– Used in exit condition and assignment statement

– It also protects us against NULL mistakes

� May be(?) less efficient but much more elegant

Explaining cached SQL

� Use a dedicated PLAN_TABLE…play nice

� Explain as the correct user
– Parsing_schema_id in V$SQLAREA

– ALTER SESSION SET CURRENT SCHEMA

� Explain full text of SQL using SQLTxt

� Collect SQL text and parse users first, then explain
iteratively

XplnAll.SQL

� Loads full SQL select stmt text and parse users
into PL/SQL index-by tables

– Indexed by hash_value (note potential problem)

� Loop through tables using FIRST and NEXT
– Set current_schema in session
– Explain the SQL
– Native dynamic SQL makes it easy!

� Report on PLAN_TABLE
– See Burleson article in Oracle Magazine

Objectives

� Learn where V$ SQL pointers can be found
� Implement full SQL text retrieval in a SQL-

callable PL/SQL function
� Engage best practice considerations for developing

more bullet-proof modules
� Use Oracle8i PL/SQL features
� Appreciate the usefulness and power of server-side

PL/SQL modules and packages

Resources

� Object Success, Bertrand Meyer, Prentice Hall,
1995.
� Mining Gold from the Library, Don Burleson,

Oracle Magazine, Nov/Dec 2000.
� Oracle PL/SQL Best Practices, Steven Feuerstein,

O’Reilly & Associates, 2001.
� Practical Oracle8i, Jonathan Lewis, Addison-

Wesley, 2001.

Contact info

� jberesni@precise.com

� www.precise.com

