PL/SQL Practicum:
On Fetching and Explaining SQL from the SGA

John Beresniewicz
Technology Manager
Precise Software Solutions

Design by Contract

Design by Contract is a powerful metaphor for
software construction. It leads developers and
managers to view the construction of a software
system as consisting of a large number of
contract decisions, large and small, between
modul es cooperating toward a common goal.

Bertrand Meyer, Object Success

Design by Contract

* Preconditions. what must be true upon entering the
module?

* Postconditions: what does the module promise will
ne true upon exit?

* Invariants. what does the module promise not to
change?

SQL in the SGA

* Oracle caches SQL in library cache
— Query plan and other execution info

* Pointed to by hash value and address

e Pointerslocated in severa (V$) places
— Full text availablein V$SQLTEXT

V$ pointersto cached SQL

e V$SOLAREA
— Aqggregate resource metrics across all child cursors
- Expensive due to use of group functions
— Problem: Only 1000 characters of SQL text

e V$SESSION
— Current and previous SQL statement for session
e V$SOQL

- Same as V$SQLAREA but not aggregated over
children, less expensive to query

Piecing SQL text together

e VESQLTEXT
— Full SQL statement cut into ordered 64 byte pieces

— Concatenate SQL_TEXT column value for successive
pieces, ordered by PIECE column

— Address and Hash value are the key
 How about a PL/SQL function to do this?
— Accept address/hash and return SQL text

Function SQLtxt (v1)

FUNCTI ON SQLt xt
(hash_IN I N v$sqgl t ext. hash_val ue%d YPE
,addr I N I'N v$sqgl t ext. addr ess%l YPE)
RETURN VARCHAR2

e Can beusedin SQL statements

* Anchored parameter declarations

e Returns PL/SQL varchar2 (up to 32767 chars)
e Cursor FOR loop driven by module parameters

Thedriving cursor

CURSOR sql pi ece _cur
| S
sel ect piece, sqgl _text
fromv$sql t ext
wher e hash_val ue
and address
order by piece;

hash I N
addr | N

e Cursor-for loop on this does cursor does it all

SQL txt contract elements

e Return full text of SQL identified by IN
parameters (or NULL)

e Callablefrom SQL statements
— WNDS purity inside pre-8i packages
* Not raising exceptionsis an extremely valuable
Invariant
— Exceptions change the “ state” of the system

The“problem” that isn’t...yet

e SQL text could exceed 32K in length
— Couldit really?

* Function SQLtxt could raise exception
— Should we catch and process?
— Should we process and not raise?

e Calling programs may need to handle
— Exception decreases module usability

1% strategy: quick elimination

EXCEPTI ON
VWHEN OTHERS THEN
temp_sql t xt

SQLERRM SQLCODE) ;

RETURN tenp _sqgl t xt;

e Error messages will fit into VARCHARZ2
* Function will not raise an exception
 However, we have violated contract

Better exception externalization

EXCEPTI ON
VWHEN OTHERS THEN
tenmp _neg = SQLERRM SQLCODE) ;
debug(SYSDATE, t enp_nsQ) ;
RETURN NULL,; -- or tenp_sqltxt;

e Debug procedure logs time-stamped errors
e Returning NULL iswithin contract
* However, module dependence is introduced

Avoiding the exception

e (Catch exception and return whatever we have to
that point

e Allow caler to control how much text to return
up to 32K

 Both solutions can return truncated SQL
e Cannot explain truncated SQL, problem?
e Should we return NULL instead?

Function SQLtxt (v2)

FUNCTI ON SQLt xt
(hash IN I N sys.v_$sql text. hash _val ue%YPE
,addr IN IN sys.v_$sqgl text. addr ess%YPE
,maxl ength IN IN INTEGER : = 32767)

RETURN VARCHAR2

* New parameter maxlength
— Cadller controls size of return varchar2
- Defaultsto existing (v1) signature and behavior

* Eliminate synonym-based variable anchoring

New variables = new contr act

* Precondition: Maxlength IN should be NOT
NULL integer between O and 32767

* Do not want a possible new exception
— Force the precondition to be true

-- force maxl ength between 0 and 32767
max| engt h : = GREATEST(
LEAST(NVL(maxl engt h_I N, 0)
, 32767)
, 0) ;

SQLtxt v2 Function Body

e Open cursor-for loop on sglpiece cur

— Add whole piece and track total length if thiswill not
exceed maxlength

— Otherwise add substring until maxlength reached
e RETURN entire SQL text or maxlength size
substring of it

* Brute-force implementation, not elegant
— But... It meets design criteria

Problemswith v2

e Boundary analysis. maxlength=1 and SQL size
327677
— Loop isrun 32766 times too many!

e Cursor-for isthe wrong loop
— Itwasright for v1, where it originated

e Solution: simple loop with explicit exit when SQL
reaches maxlength size

Function SQL txt (v3)

e Simple LOOP on sglpiece cur
e EXxit condition reads clearly
— No more pieces OR textsize = maxlength

* Lesson: added features may induce changes to
trusted code sections

e ThelF...END IF text size tracking is ugly

Function SQL txt (v4)

* Replaceugly IF...END IF with smple assignment

e Local function cur_length returns size of text so far
—- Used in exit condition and assignment statement
— It also protects us against NULL mistakes

* May be(?) less efficient but much more elegant

Explaining cached SQL

e Useadedicated PLAN TABLE...play nice

* Explain asthe correct user
— Parsing_schema idin V$SQLAREA
- ALTER SESSION SET CURRENT SCHEMA

e Explain full text of SQL using SQL Txt

* Collect SQL text and parse usersfirst, then explain
iteratively

XpInAll.SQL

e Loadsfull SQL select stmt text and parse users
Into PL/SQL index-by tables

— Indexed by hash value (note potential problem)

e Loop through tablesusing FIRST and NEXT
— Set current_schemain session

- Explain the SQL
— Native dynamic SQL makes it easy!
* Report on PLAN _TABLE
— See Burleson article in Oracle Magazine

Objectives

e Learn where V$ SQL pointers can be found

e Implement full SQL text retrieval in a SQL-
callable PL/SQL function

e Engage best practice considerations for devel oping
more bullet-proof modules

e Use Oracle8i PL/SQL features

* Appreciate the usefulness and power of server-side
PL/SQL modules and packages

Resour ces

* ODbject Success, Bertrand Meyer, Prentice Hall,
1995.

* Mining Gold fromthe Library, Don Burleson,
Oracle Magazine, Nov/Dec 2000.

e Oracle PL/SQL Best Practices, Steven Feuerstein,
O’'Rellly & Associates, 2001.

 Practical Oracle8i, Jonathan Lewis, Addison-
Wesley, 2001.

Contact Info

e |beresni@precise.com
* WWW.Precise.com

