
Strategies for
Rapid Development

in Internet Time

William A. Cunningham
December 5, 2000

NYOUG
New York, NY

Background - Issues

• Productivity differences can be 10 to 1 in
developing systems in the same industry!

• 2/3rds of all projects significantly miss time
and cost estimates

• Size of project slippage increases with the
size of the project

• Rapid development issues not limited to the
Internet

Purpose

• Introduce some of the concepts of Rapid
Development

• Provide ideas to help you get your software
projects under control

• Provide information on proven concepts
that have helped other organizations
succeed.

Scope

• Define what Rapid Development Is

• Define and discuss the rules that make rapid
development effective

• Discuss which flavor of rapid development works
best for your organization

• Define 4 major lifecycle methods

• Discuss the role of Oracle Designer in rapid
development

Audience

• Everyone - as they are affected by slow
development of systems

• Especially for
– Managers

– Tech Leads

– DBAs and Data Modelers

What is Rapid Development?

• Different Viewpoints
– Some Developers

• particular software, hardware tool or method that
produces an application

– Dot.Com Developer
• 22 hour workdays and a cot under the workstation

– Data architect
• CASE methodologies, JAD sessions, tight schedules

– Manager
• latest methodology reviewed in Computerworld

Rapid Development

• Definition
– Rapid Development is the effective and

efficient creation of application systems within
a full-fledged strategy

– Or, put simply, it is developing something more
quickly and efficiently than we normally do.

Rapid Development -
Minimizing Timeframe

• Each organization has their own ‘hot’
button for development:
– Speed-oriented - those that improve

development speed, producing faster code

– Risk-avoidance - those that address technology
and business risk, avoiding severe schedule
overruns

– Visibility-oriented - those that show progress,
avoiding the illusion of slow development

Rules of Rapid Development

• Rapid Development Strategies are quite simple
and can be stated in 3 basic rules:

• 1. Apply proven methodologies and development
fundamentals

• 2 Identify and manage your technology and
business risks

• 3. Apply good project management, schedule
oriented techniques

Rules of Rapid Development

• Rules ARE Simple
• But Rules are Not Easy to Follow

• Successful rapid development requires ALL
of the rules to be in place

• If any rule is ignored, the project schedule is
probably in jeopardy.

1. Apply Proven Methodologies
and Development Fundamentals

• Methodology defined
– A methodology is a body of practices,

procedures, and rules used by those who work
in a particular field or specialty

• Some proven methodologies are:
– CASE*Method - Richard Barker - Oracle

– The Zackman Framework - John Zachman

– Rational Unified Process - Booch, Jacobson
and Rumbaugh

Oracle Designer is NOT a
Methodology

• A methodology is a disciplined way of
approaching a system

• Oracle Designer is a toolkit
• Oracle Designer implements the

CASE*Method methodology of Richard
Barker

• Designer helps document and engineer your
work; it does not do the design for you!

2. Identify and Manage Your
Technology and Business Risks

• What style risk management do you use:
– Crisis management - fire fighting, after they have

become a problem

– Fix on Failure - Detect and react to risks after they
have happened

– Risk mitigation - Have resources ready to handle risks
if they occur

– Prevention - Implement plan to identify and prevent
risks from being a problem

– Elimination of root cause - eliminate risks before they
can exist

Most Common Schedule Risks

• Feature Creep

• Shortchanging quality

• Overly optimistic schedules

• Inadequate design

• Silver-bullet syndrome

• Research-oriented development

• Mismatched technical skills

• Communication issues between developers and clients

Case Study-
What went wrong here?

• Large multinational organization wanted to
be a ‘key player’ in the travel portal
business within 6 months.

• CIO selected a software vendor with a
software product that was new and untested
in the commercial environment

• The software product was not Oracle
DBMS based, the target platform.

Case Study-
What went wrong here?

• A quick ‘fit-gap’ analysis showed
significant gaps that were documented.

• However, CIO sold the project to top
management and a delivery date was
already set before the gap analysis was
complete.

• First release of software did not include
required ‘gap’ functionality

Case Study-
What went wrong here?

• The software was not ‘frozen’ until the end
of the project

• Unit testing had not begun by the time full
integration tests were scheduled to start.

• The QA work became one of ‘heroic effort’
• The development team worked harder and

harder but bugs kept on cropping up.
• Daily builds sometimes had bugs resurface

Case Study-
What went wrong here?

• Deadline came (and three others afterward)
before software was stable enough for
release

• System was released as a subset of the
original design

What Rules Were Ignored?

• 1. Apply proven methodologies and
development fundamentals

• 2 Identify and manage your technology and
business risks

• 3. Apply good project management schedule
oriented techniques

Which Risks Were Missed?

•Feature Creep
•Shortchanging quality
•Overly optimistic schedules
•Inadequate design
•Silver-bullet syndrome
•Research-oriented development
•Mismatched technical skills
•Communication issues between developers and customers

Which Rapid Development
Strategy Works For You?

• There is no ‘one size fits all’ development
strategy

• There are no shortcuts to the methodology
side of successful rapid development

• Need to devote the proper resources to the
classic lifecycle phases of a project

Which Rapid Development
Strategy Works For You?

Activity Small Project
(2.5K lines code)

Large Project
(500K lines)

Strategy & Analysis 10% 30%

Detailed Design 20% 20%

Code/Debug 25% 10%

Unit Test 20% 5%

Integration 15% 20%

System Test 10% 15%
Steve McConnell-Code Complete

Which Rapid Development
Strategy Works For You?

• Depends on your specific business,
corporate culture and current systems

• Need to know if your project has:
– A very strong project schedule constraint, such as a

regulatory deadline or startup funding constraint

– A top management or user request for ‘rapid
development’ that translates into a desire for lower cost
or less risk

– Do you have any limitation or weakness that would
prevent a rapid development success?

Rapid Development - A Lifecycle
Approach

• The Pure Waterfall - the granddad of other,
more effective lifecycle models

• The Code and Fix - a common, but not
rapid, development model

• Spiral Development - breaks the project into
manageable submodels, a RUP approach

• Timebox Prototyping - defining the
specifications as the system is prototyped

The Waterfall Model
Strategy

Analysis

Design

Prototype

Deploy

Test

Build

The Waterfall Model - Summary

Works with poorly defined requirements Poor

Works with poorly understood architecture Poor

Produces highly reliable system Excellent

Produces systems with large growth envelope Excellent

Manages Risk Poor

Can be constrained to a predefined schedule Fair

Has low overhead Poor

The Waterfall Model - Summary

Allows for midcourse corrections Poor

Provides customer with progress visibility Poor

Provides management with progress
visibility

Fair

Requires little manager or developer
sophistication

Fair

Code & Fix

• If you have not selected a methodology, you
are probably using this model.

• CLASSIC MISTAKE
– ‘I do not have time for strategy and analysis; I

need to start coding right away’

• Code ‘like Hell’ technique
• 22 Hour days and Crisis management

Code & Fix

Fuzzy
Specs

Code &
Fix

System
(Perhaps??)

Code and Fix - Summary

Works with poorly defined requirements Poor

Works with poorly understood architecture Poor

Produces highly reliable system Poor

Produces systems with large growth
envelope

Poor to Fair

Manages Risk Poor

Can be constrained to a predefined schedule Poor

Has low overhead Excellent

Code and Fix - Summary

Allows for midcourse corrections Unknown

Provides customer with progress visibility Fair

Provides management with progress
visibility

Poor

Requires little manager or developer
sophistication

Excellent

Spiral Development

• Breaks project into sub projects
• Handles high risk areas first

– poorly understood requirements

– poorly understood architecture

– potential performance issues

• Then the model finishes as a classic
waterfall

Spiral Development

Spiral Development - Summary

Works with poorly defined requirements Excellent

Works with poorly understood architecture Excellent

Produces highly reliable system Excellent

Produces systems with large growth envelope Excellent

Manages Risk Excellent

Can be constrained to a predefined schedule Fair

Has low overhead Fair

Spiral Development - Summary

Allows for midcourse corrections Fair

Provides customer with progress visibility Excellent

Provides management with progress
visibility

Excellent

Requires little manager or developer
sophistication

Poor

Timebox Prototyping

• Define specifications as you are coding the
system

• Starts as ‘fuzzy’ specification of client
requirements

• Produces a prototype within a specified
timeframe

• Process repeated until client is satisfied

Timebox Prototyping

Design and
Implement
Prototype

Acceptable?

Complete
and Release
Prototype

No

Yes

Initial
Idea

Timebox Prototyping - Summary

Works with poorly defined requirements Excellent

Works with poorly understood architecture Poor to Fair

Produces highly reliable system Fair

Produces systems with large growth envelope Excellent

Manages Risk Fair

Can be constrained to a predefined schedule Poor

Has low overhead Fair

Timebox Prototyping - Summary

Allows for midcourse corrections Excellent

Provides customer with progress visibility Excellent

Provides management with progress
visibility

Fair

Requires little manager or developer
sophistication

Poor

Role of Oracle Designer in Rapid
Development

• Oracle Designer is a tool
• Oracle Designer is NOT a ‘Silver Bullet’

• As a Tool
– it helps a data architect, data modeler or

business analyst in the same way a word
processor helps a writer.

– Designer will not make a bad model good, but
it will make the modeler more efficient

Role of Oracle Designer in Rapid
Development

• Designer is a ‘repository’ based system
– allows for business and data information

gathered from activities such as JAD sessions
and prototyping

– information gathered in Upper CASE can be
used for physical table design and as input into
Developer for the next stages of development
(generation)

Role of Oracle Designer in Rapid
Development

Where does Designer Fit into the
Lifecycle Approach?

• Waterfall or Spiral Lifecycle Models
– Strategy Phase

• Business Functions
– Function Diagrammer
– Process Modeler

– Dataflow Diagrammer
– Repository Object Navigator (RON)

• Entity Information
– Entity Relationship Diagrammer

– Repository Object Navigator (RON)

Data and Functions -
 Cross Checking

• Cross checking work is one of the
fundamental principles in software
engineering

• Designer provides the Matrix Diagrammer
to help cross reference each entity to a
function or functions and visa versa
– Black holes

– Novas

Where does Designer Fit into the
Lifecycle Approach?

• Timebox Prototype Approach
• There may be a need to bypass strategy and

analysis to quickly demonstrate the
proposed system to the client

• Skip creation of entity and functions and go
directly into first-cut database design using
RON and the Data Diagrammer

Other Thoughts and Avoiding
Classic Mistakes

• Which strategy works depends on your
business and your current systems
– dot.com

– legacy system conversion

– new system, established business

• Any methodology is better than none
• Have frequent milestones - know where you

are and where you want to be

Final Thoughts and Avoiding
Classic Mistakes

• Do not rush into coding before you know
what you need to code

• Document, document, document and
document

• Use a repository to have a ‘living’ strategy
and design

• Need to have a target to hit

Final Thoughts and Avoiding
Classic Mistakes

• Develop key players and teamwork
• Information hiding is good but distorting

data structures as ‘shortcuts’ is bad
• Involve the business and
• Remember, there are no Silver Bullets

Thanks - and any Questions?

William A. Cunningham
203.888.0649

Bill@CunninghamSystems.Com

