—p

William A. Cunningham
December 5, 2000
NYOUG
New York, NY



Productivity differences Car‘h, belOto1l i?
developing systems in the same industry!

2/3rds of all projects significantly misstime
and cost estimates

Size of project dlippage increases with the
size of the project

Rapid development Issues not limited to the
|nternet




_P
|ntroduce some of the concépts of Rapl

Devel opment

Provide ideas to help you get your software
Orojects under control

Provide information on proven concepts
that have helped other organizations
succeed.




_I>
Define what Rapid Developn‘h@nt IS

Define and discuss the rules that make rapid
development effective

Discuss which flavor of rapid development works
nest for your organization

Define 4 major lifecycle methods

Discuss the role of Oracle Designer in rapid
devel opment




_>
Everyone - asthey are affe&ted by slow
development of systems
Especially for

Managers

Tech Leads
DBASs and Data Modelers



Different Viewpoints ]

Some Developers

particular software, hardware tool or method that
produces an application

Dot.Com Devel oper

22 hour workdays and a cot under the workstation
Data architect

CASE methodologies, JAD sessions, tight schedules
M anager

latest methodology reviewed in Computerworld



_I>
Definition |

I
Rapid Development is the effective and
efficient creation of application systems within
afull-fledged strategy
Or, put simply, It Is developing something more
quickly and efficiently than we normally do.



Each organization has thef r‘lpwn ‘hot’
button for devel opment:

Speed-oriented - those that improve
devel opment speed, producing faster code

Risk-avoidance - those that address technology
and business risk, avoiding severe schedule
overruns

Visibility-oriented - those that show progress,
avolding the illusion of slow development



S
_IP
Rapid Development Strateg e% are guite sSim

and can be stated in 3 basic rules:

1. Apply proven methodol ogies and devel opment
fundamentals

2 |dentify and manage your technology and
business risks

3. Apply good project management, schedule
oriented techniques



S
_I>
Rules ARE Simple |

But Rules are Not Easy to Follow

Successful rapid development requires ALL
of therulesto bein place

If any ruleisignored, the project scheduleis
probably In jeopardy.



-->
Methodology defined |

I
A methodology Is abody of practices,
procedures, and rules used by those who work
iIn aparticular field or specialty
Some proven methodologies are:
CASE*Method - Richard Barker - Oracle
The Zackman Framework - John Zachman

Rational Unified Process - Booch, Jacobson
and Rumbaugh



A methodology is a disciplined way of
approaching a system

Oracle Designer is atoolkit
Oracle Designer implements the

CASE*Method methodology of Richard
Barker

Designer helps document and engineer your
work; 1t does not do the design for you!




What style risk managemeﬁt do you u

Crisis management - fire fighting, after they have
become a problem

Fix on Failure - Detect and react to risks after they
have happened

Risk mitigation - Have resources ready to handle risks
If they occur

Prevention - | mplement plan to identify and prevent
risks from being a problem

Elimination of root cause - eliminate risks before they
can exist



Feature Creep |
Shortchanging quality

Overly optimistic schedules
|nadequate design

Silver-bullet syndrome
Research-oriented devel opment
Mismatched technical skills
Communication issues between developers and clients



P
: : . |
_arge multinational organiZation wanted1o

oe a‘key player’ inthetravel portal
nusi ness within 6 months.

ClO sdlected a software vendor with a
software product that was new and untested
INn the commercial environment

The software product was not Oracle
DBMS based, the target platform.




— >
A quick ‘fit-gap’ analysis showed
significant gaps that were documented.
However, ClO sold the project to top
management and a delivery date was

already set before the gap analysiswas
compl ete.

First release of software did not include
required ‘gap’ functionality



l :
The software was not ‘frozen’ until the ?

of the project

Unit testing had not begun by the time full
Integration tests were scheduled to start.

The QA work became one of ‘heroic effort’

The development team worked harder and
harder but bugs kept on cropping up.

Daily builds sometimes had bugs resurface




_?
Deadline came (and three dt,hers afterw

before software was stable enough for
release

System was released as a subset of the
original design




I
1. Apply proven methodol o‘gies and >
devel opment fundamentals

2 ldentify and manage your technology and
business risks

3. Apply good project management schedule
oriented techniques




*Feature Creep

eShortchanging quality

*Overly optimistic schedules

| nadequate design
*Silver-bullet syndrome
*Research-oriented devel opment
*Mismatched technical skills
«Communication issues between devel opers and customers



Thereisno ‘onesizefitsal I‘l’, developm

strategy

There are no shortcuts to the methodol ogy
side of successful rapid development

Need to devote the proper resources to the
classic lifecycle phases of a project




Small Project Large Project
(25K linescode) (500K lines)

Strategy & Analyss 10% 30%
Detailled Desgn 20% 20%
Code/Debug 25% 10%
Unit Tedt 20% 5%

| ntegration 15% 20%

System Test 10% 15%




.
Depends on your specific bysiness,
corporate culture and current systems

Need to know If your project has:

A very strong project schedule constraint, such as a
regulatory deadline or startup funding constraint

A top management or user request for ‘rapid

development’ that trandlates into a desire for lower cost
or lessrisk

Do you have any limitation or weakness that would
prevent arapid development success?




The Pure Waterfall - the granddad of ot
more effective lifecycle models

The Code and Fix - acommon, but not

rapid, development model

Spiral Development - breaks the project into
manageabl e submodels, a RUP approach

Timebox Prototyping - defining the
specifications as the system Is prototyped







Works with poorly defined requirements
Works with poorly understood architecture
Produces highly reliable system

Produces systems with large growth envelope
Manages Risk

Can be constrained to a predefined schedule

Has |low overhead

Poor
Poor
Excellent
Excellent
Poor

Fair

Poor



Allows for midcourse corrections
Provides customer with progress visibility
Provides management with progress
visibility

Requires little manager or devel oper
sophistication

Poor
Poor
Fair

Far



If you have not selected a n‘ﬂ,ethodol ogy,
are probably using this mode!.

:OU
CLASSIC MISTAKE

‘I do not have time for strategy and analysis; |
need to start coding right away’

Code ‘like Hell’ technique
22 Hour days and Crisis management







l

|
Works with poorly defined requireme‘nts
Works with poorly understood architecture
Produces highly reliable system

Produces systems with large growth
envelope
Manages Risk

Can be constrained to a predefined schedule

Has low overhead

Poor

Poor
Poor

Poor to Fair

Poor
Poor

Excellent



Allows for midcourse corrections
Provides customer with progress visibility
Provides management with progress
visibility

Requires little manager or developer
sophistication

Unknown
Fair
Poor

Excellent



_I>
Breaks project into sub proflects

Handles high risk areas first
noorly understood requirements
poorly understood architecture
potential performance issues

Then the model finishesas aclassic
waterfall




Trummmulative cogt

Rl
analysls
gk
ARyl

Oy artiona
Py R

Ravlew - ——— —]-- — ]‘ _
Fartifion

:
L Aequiraments
' plan, lifecyolo

Concept o oo
Oy ration, ot f -
e A mEquire-

Ceveloprient | ¢ oo irements
Falan vl detion

| e Chaskmn walidaticn
and test plan [ﬂl‘ll] wanfication,




Works with poorly defined requirements
Works with poorly understood architecture
Produces highly reliable system

Produces systems with large growth envelope
Manages Risk

Can be constrained to a predefined schedule

Has low overhead

Excellent
Excellent
Excellent
Excellent
Excellent
Fair

Fair



Allows for midcourse corrections
Provides customer with progress visibility
Provides management with progress
visibility

Requires little manager or developer
sophistication

Fair
Excellent

Excellent

Poor



_I;
Define specifications as yoﬂq are coding'the

system

Starts as ‘fuzzy’ specification of client
requirements

Produces a prototype within a specified
timeframe

Process repeated until client 1s satisfied



Initial
|dea



l

|
Works with poorly defined requirements I

Works with poorly understood architecture
Produces highly reliable system

Produces systems with large growth envelope
Manages Risk

Can be constrained to a predefined schedule

Has |low overhead

Excellent
Poor to Fair
Fair
Excellent
Fair

Poor

Fair




Allows for midcourse corrections
Provides customer with progress visibility
Provides management with progress
visibility

Requires little manager or developer
sophistication

Excellent
Excellent
Fair

Poor



| -
--I>
: . l
Oracle Designer isatool !

Oracle Designer isNOT a‘Silver Bullet’

AsaTool

It helps a data architect, data modeler or
pusiness analyst in the same way a word
processor helps awriter.

Designer will not make a bad model good, but
It will make the modeler more efficient




RS
—_—
Designer isa ‘repository’ based system

allows for business and data Information

gathered from activities such as JAD sessions
and prototyping

Information gathered in Upper CASE can be
used for physical table design and as input into

Developer for the next stages of development
(generation)







Waterfall or Spiral Lifecycle Models

Strategy Phase

Business Functions

Function Diagrammer

Process Modeler

Dataflow Diagrammer

Repository Object Navigator (RON)
Entity Information

Entity Relationship Diagrammer

Repository Object Navigator (RON)



. }
Cross checking work Is one of the

fundamental principles in software
engineering
Designer provides the Matrix Diagrammer

to help cross reference each entity to a
function or functions and visaversa

Black holes
Novas



— >
Timebox Prototype Approa{ch

There may be aneed to bypass strategy and
analysis to quickly demonstrate the
proposed system to the client

Skip creation of entity and functions and go
directly into first-cut database design using
RON and the Data Diagrammer



Which strategy works depehds on your
business and your current systems

dot.com
legacy system conversion
new system, established business
Any methodology Is better than none

Have frequent milestones - know where you
are and where you want to be

>



_P
Do not rush into coding bef‘tpre you kno
what you need to code

Document, document, document and
document

Use arepository to havea‘living' strategy
and design

Need to have atarget to hit




Develop key players and teiamwork >

Information hiding is good but distorting
data structures as ‘ shortcuts' 1s bad

|nvolve the business and
Remember, there are no Silver Bullets




|
|

William A. Cunningham

203.888.0649
Bill@CunninghamSystems.Com




