
Page 1 of 10

Strategies for Rapid Development in Internet Time
By: William A. Cunningham

December 5, 2000

1. Introduction

1.1. Background

Roughly two-thirds of all projects significantly overrun their cost and time estimates. According to
surveys, the average large software project misses its deadline by at least 25 to over 50 percent. The
size of slippage increases with the size of the project. There is a perceived slow-development problem
that is not limited to the Internet community.

However, some organizations are developing systems rapidly much more quickly than others. The
difference in productivity in the same industry can be as high as 10-1!

1.2 Purpose

The purpose of this paper is to introduce some of the concepts of Rapid Development to help you get
your software development projects under control and to apply some of the same proven concepts that
have helped other organizations dramatically increase productivity.

1.2. Scope

The scope of this paper is to:

• define what Rapid Development is (and what it is not),
• define and discuss the rules that make rapid development effective,
• discuss which flavor of rapid development works best for your organization,
• define four major lifecycle methods that have an impact on rapid development, and
• discuss the role of Oracle Designer in rapid development

1.3. Audience
Everyone is affected by slow development of systems. Software developers, managers, clients and end
users should find at least one topic in this paper useful. However, this paper is designed especially for:

Managers
Software development is not solely a technical issue. It is a business issue. Many of the slow software
development issues could be helped with the efficient application of proper business and strategy
planning procedures to IT solutions

DBAs and Data Modelers
Data management means more than fast transaction speeds. It means having data structures that
answer the business needs of today while being flexible enough to handle the eventual needs of
tomorrow. DBAs need to stand back and ask serious questions and have the flexibility built into the
data structures to handle the ‘we never ever do that’ situation.

Page 2 of 10

2. What Is Rapid Development?

Today, we hear that ‘it only takes 15 seconds on the web to lose a customer’, that ‘we have to get it right
the first time’ and that the systems have to be developed ‘in Internet time’. This can be a real challenge for
the software developers of today. Code has to be written faster, better; we turn to ‘Rapid Development’ to
meet those challenges.

But what is Rapid Development anyway?

Rapid Development can mean different things to different people. To some, it is a particular software,
hardware tool or method that produces an application. Many in the dot.com ranks see Rapid Development
as 22 hour days and a cot under the workstation. To data architects and information engineers it is CASE
methodologies, JAD sessions, and tight time frames. To a manager with ever tightening schedules, it is the
latest methodology gleamed from the last issue of ComputerWorld or an InFlight magazine.

For the purposes of this paper, Rapid Development is the effective and efficient creation of application
systems within a full-fledged strategy. Or, simply put, it is developing something that works more
quickly and efficiently than we normally do.

Rapid Development involves the use of effective practices and tools that are oriented specifically toward
achieving your schedule. We tend to think of this as being obvious. But, if obvious, why do we tend to go
with the ‘latest’ beta or ‘hottest’ software tool (a.k.a. the silver bullet) that may or may not support our
goals. In our case, should we select the just released, new version of Oracle Designer, Developer or DBMS
or work with a stable configuration with known limitations?

Since development projects are based on schedules, rapid development must find a way to minimize the
overall timeframe. Each organization has their own ‘hot’ buttons for development but these can be
generalized into:

• Speed-oriented techniques – those that improve development speed, producing code faster
• Risk avoidance techniques – those that address technology and business risk, avoiding severe schedule

overruns
• Visibility-oriented techniques – those that show progress, avoiding the appearance of slow

development (a.k.a. the why are they not coding yet syndrome.)

“Rapid product development is not a quick fix for getting one product – which is probably already late – to
market faster. Instead, it is a strategic capability that must be built from the ground up.” Preston G. Smith
and Donald G. Reinertsen, Developing Products in Half the Time

3. Rules of Rapid Development

Rapid Development strategies are fundamentally quite simple. There are three basic rules:

1. Apply proven methodologies and development fundamentals
2. Identify and manage your technology and your business risks
3. Apply good project management schedule oriented techniques

These rules sound simple. However, they are not easy to follow. A successful rapid development project
requires that ALL of the rules be in place. If any one is missing, the project schedule is probably in
jeopardy.

Apply Proven Methodologies and Development Fundamentals

A methodology is body of practices, procedures, and rules used by those who work in a specific field or
specialty. Some of the proven software development methodologies are, but not limited to,
• CASE*Method – by Richard Barker

Page 3 of 10

• The Zachman Framework – by John A. Zachman
• Strategic Data-Planning Methodologies – by James Martin
• Rational Unified Process(RUP) – by Booch, Jacobson and Rumbaugh

A methodology is a disciplined way of approaching a problem. A methodology is not Oracle Designer nor
is it Rational ROSE. These two products are toolkits or aids. Oracle Designer implements the
CASE*Method developed by Richard Barker while Rational Rose implements the concepts of RUP.
These products help you engineer and document your designs according to the specific methodology; they
do not do your design work for you.

Identify and manage your technology and your business risks

 Before delving into technology and business risks, which type of risk management do you frequently
engage:

• Crisis management – Fire fighting; address risks only after they have become problems
• Fix on failure – Detect and react to risks promptly, but only after they have happened
• Risk mitigation – Plan ahead of time to provide resources to cover risks if they occur, but do nothing to

eliminate them in the first place
• Prevention – Implement and execute a plan as part of the software project to identify risks and prevent

them from becoming problems
• Elimination of root cause – Identify and eliminate factors that make it possible for risks to exist at all.

There are a number of potential risks that can affect your software development project. However, the
most common schedule risks are:

• Feature Creep
• Shortchanged quality
• Overly optimistic schedules
• Inadequate design
• Silver-bullet syndrome
• Research-oriented development
• Mismatched technical skills
• Communication issues between developers and clients

Case Study

A large multinational corporation decided that they wanted to be a ‘key player’ in the travel portal
business within six months. The CIO selected a software vendor who had created a software product
that was new and untested in the commercial marketplace and was not Oracle DBMS (the target
platform) based. A superficial ‘fit-gap’ analysis was performed showing some significant gaps.
However, the CIO sold the project to top management and the delivery date was already agreed upon
before the technical details were known. Required and identified ‘gap’ functionality was missing
when the first software release was delivered. The software was not frozen until the end of the
project. Unit testing had not begun by the scheduled time for full integration tests. The Quality
Assurance effort became one of ‘heroic effort’ rather than systematic planning. The development
teams worked harder and harder but bugs were discovered faster than they could be fixed. New
software was released on a daily basis and some fixed bugs resurfaced. The deadline came and went
as did three other deadlines before the software was stable enough to be released.

What went wrong?

Definition – CASE Computer Aided Systems Engineering is the combination of graphical, dictionary,
generator, project management and other software tools to assist computer development staff to engineer and
maintain high-quality sytems for their end-users, within the framework of a structured method. Richard
Barker – CASE*METHOD Entity Relationship Modeling

Page 4 of 10

Rule 1: Apply proven methodologies and development fundamentals

The proven methodologies and development fundamentals were not followed. Although the ‘fit-gap’
analysis was complete, the development team did not address the ‘gap’ requirements until too late in
the software development. When the software development timeframe overran the test requirement
phase, it was decided to eliminate most of the testing time to catch up.

• Inadequate design
• Shortchanged quality

4. Rule 2: Identify and manage your technology and your business risks

Business and technical risks were underestimated. The technology risk was severely underestimated
that the software vendor had not developed this application for an Oracle port nor for an organization
as large as this. The business risk was also underplayed of trying to become a major player in the
web portal business within six months.

• Shortchanged quality
• Inadequate design
• Silver-bullet syndrome

Rule 3: Apply good project management schedule oriented techniques

The key problem was ‘wishful thinking’. The top down direction of a six month deliverable as the
keystone of this project sealed its fate. There were no other considerations other than meeting the
deliverable date, whatever it took.

• Overly optimistic schedules

Sadly, this Case Study is not an isolated case. Many corporations have the same experiences and do not
appear to learn from their mistakes. As a pilot, we refer to this tendency as “Take Off-itus”. That is, once
the decision is made to take-off or go, it is difficult, if not impossible to stop the forward motion and abort a
system that you know will not fly right.

4. Which Rapid Development Strategy Works For You?

Rapid Development does not mean that critical stages in the project can be skipped. There is no ‘one size
fits all’ development strategy and there are no shortcuts to the methodology side of successful rapid
development. It is even more important in Internet time that we devote the proper resources to the
following classic stages of the project:

Activity Small Project
(2.5 K lines code)

Large Project
(500k lines code)

Strategy and Analysis 10% 30%
Detailed Design 20% 20%
Code/Debug 25% 10%
Unit Test 20% 5%
Integration 15% 20%
System Test 10% 15%

Classic Stages of a Project – Steve McConnell, Code Complete

However, which rapid development style fits you depends on your specific business, corporate culture and
your current systems. To determine which rapid development strategy works for you, you need to know if
your project has:

Page 5 of 10

• A very strong project schedule constraint, such as having a regulatory deadline, having a system in
place for the Christmas season or meeting a funding constraint as a startup dot.com

• A top management or user requirement for ‘rapid development’ that really translates into a desire for
lower cost or less risk instead

In either case does your project have any limitation or weakness that would prevent a rapid development
success?

5. Rapid Development – A Lifecycle Approach

Over the years, a number of approaches have been used to define a master plan and to improve the project
success ratio.

5.1 Pure Waterfall

The original lifecycle model has become the basis for other, often more effective, lifecycle models.
Each phase of the project is completed and stable before the next phase starts. The waterfall model
uses documentation as the deliverable product and the phases do not overlap.

Strategy

Analysis

Design

Prototype

Build

Test

Deploy

Page 6 of 10

TRICK

 5.1 Code and Fix

This is a common, but not rapid, development methodology. If you have not already selected another
proven methodology, this is the one that you will probably be using. This is the classic mistake of ‘I
don’t have time for strategy and analysis; I need to start coding right now to meet our deadline’.
Unfortunately, this is a ‘you can pay me now or you can pay me later’ approach to the development
project. As you might expect, this falls into the ‘code like hell’ category and any development that
comes close to making its schedule is due to heroic efforts and many 22 hour nights.

5.2 Spiral Development

The Spiral Development is the exact opposite of the Code and Fix model. The spiral model breaks the
project into manageable sub-projects, each of which addresses topics such as poorly understood
requirements, poorly understood architecture, potential performance problems. When all of the major sub-
projects are complete, the model is complete as if it were a classic waterfall model.

Fuzzy
Specs

Code &
Fix System

???

Page 7 of 10

TRICK 5.3 Timebox Prototyping

Timebox prototyping is a lifecycle model where you define the specifications as you are coding the
system. The model begins with a ‘fuzzy’ specification of the client requirements and a prototype of
what you think the system is supposed to perform within a specified timeframe. This requires that the
client provide feedback on the work in progress of the prototype in a timely manner and that any
requirements that can not be met within the agreed timeframe are held for a future cycle. This is an
iterative procedure in which the prototype is refined until the client finds it acceptable for production.

This is a very useful lifecycle method when the client is reluctant to commit to a set of specifications,
the requirements are changing rapidly or where you or your client do not understand the application
area well. This technique produces steady, visible signs of progress which are important when there
is a strong demand for development speed.

The downside it that you may not know with any certainty how long it will take to get an acceptable
product. This uncertainty can be mitigated with the client having a number of opportunities to review
the prototype in detail and to determine when or why the development should stop. The project could
stop because the prototype meets the client specification or because the client finds that the proposed
solution may not work.

5.4 Summary of Lifecycle Model Strengths and Weaknesses

As mentioned earlier, there is no ‘one size fits all’ rapid development methodology. However, the
table below outlines some of the key strengths and weaknesses of each lifecycle methodology. Which
one to use is based on your company, your corporate culture and your current applications.

Lifecycle Model/
Capability

Pure
Waterfall

Code and Fix Spiral Timebox

Works with poorly
defined requirements

Poor Poor Excellent Excellent

Works with poorly
understood architecture

Poor Poor Excellent Poor to Fair

Produces highly reliable
system

Excellent Poor Excellent Fair

Produces systems with
large growth envelope

Excellent Poor to Fair Excellent Excellent

Manages risk Poor Poor Excellent Fair
Can be constrained to a
predefined schedule

Fair Poor Fair Poor

Has low overhead Poor Excellent Fair Fair
Allows for midcourse
corrections

Poor ? Fair Excellent

Design and
Implement
Prototype

Acceptable
Complete

and Release
Prototype

Yes

No
Initial idea

Page 8 of 10

Provides customer with
progress visibility

Poor Fair Excellent Excellent

Provides management
with progress visibility

Fair Poor Excellent Fair

Requires little manager or
developer sophistication

Fair Excellent Poor Poor

6. Role of Oracle Designer in Rapid Development

Oracle Designer is a tool, not a ‘silver bullet’. As a tool, it helps a data architect, data modeler or business
analyst in the same way a word processor helps a writer. A word processor does not make a writer a
Pulitzer Prize winner but it will make them more efficient and more grammatically correct. Oracle
Designer will not make a bad data model good, but it will make the modeler more efficient.

Oracle Designer is a ‘repository’ based system that allows you to record business and data information
gathered from such activities as JAD (Joint Application Development) sessions and prototyping. This
information can be used as input to Oracle Developer for the next phase of development.

Where does Oracle Designer help in rapid development as a tool?

(Oracle Corporation)

• Waterfall or Spiral Lifecycle Approach

Strategy Phase

The Strategy portion of the lifecycle determines what information is needed by the business (a.k.a.
entities) and what business functions need to be performed. The entity definitions become the building
blocks for the table definitions that later are transformed into physical database tables. The business
functions become the building blocks for the program specifications that are later transformed into
programming modules.

• Oracle Designer has a number of ways to document and view business functions using the
Function Diagrammer, the Dataflow Diagrammer, the Process Modeler, and the Repository
Object Navigator (RON) interface.

Page 9 of 10

TRICK

TRICK

• Entities may be documented and viewed in the Entity Relationship Diagrammer and the
Repository Object Navigator (RON) interface.

Cross Checking

The concept of cross checking your work is one of the fundamental principles in software engineering.
Oracle Designer has included the Matrix Diagrammer to cross check that every entity has an
appropriate function and that the functions have appropriate entities. This is one step, although
tedious, that should not be overlooked.

Case Study

During an enterprise wide strategy study for an international commodity trading company, the IT
design team interviewed and documented all the functional areas within the corporation. At the end of
the strategy phase both a function hierarchy and a full entity diagram were produced. The technical
team immediately wanted to go into the analysis and design phases of the project. The IT Director
insisted on having a function to entity cross-reference to confirm that all the entities and all the
functions were in agreement. The programming staff insisted that they could not have missed anything
and thought the exercise a complete waste of time.

The Director led the actual cross-reference mapping exercise that took about a week to complete.
During the sessions, the team discovered that they had missed an entire subject area in the entity
model. This required a rework of the enterprise entity model to address the newly discovered
requirements.

• The Timebox Prototyping Approach

There may be a need to bypass all strategy and analysis activities to quickly demonstrate what the
proposed system might look like to the client. In this lifecycle approach, you would skip the creation
of the entity and the functions and go directly to the first-cut database design using the Repository
Object Navigator (RON) and the Data Diagrammer.

Other Thoughts on Avoiding Classic Mistakes

• Which strategy works depends on your business and current systems
• Dot.com
• Legacy system conversion
• New system, established business

• Any methodology is better than none
• Have frequent milestones – are you going where and when you want
• Do not rush into coding before you know what you need to code
• Document, document, document and then document
• Using a repository to have a ‘living’ strategy and design
• Need a target to hit
• Develop key players and teamwork
• Information hiding is good but distorting data structures as ‘shortcuts’ is bad
• Involve the business and
• Remember, there are no Silver Bullets

Page 10 of 10

Bill Cunningham founded Cunningham Systems Corporation, a Connecticut based consulting firm, in 1998
with the mission of helping organizations ‘get it right the first time’ and specializes in all phases of rapid
development strategy and design. Bill is highly knowledgeable in data management, data warehouse
systems and business modeling, having 10 years of professional experience in developing strategy studies
in preparation for installing ERP (Enterprise Research Planning) systems, and business re-engineering to
e-commerce applications. He is also highly knowledgeable and sensitive to Information Technology
management needs and business requirements, having 15 years of experience as CIO or Director of
Information Technology.

 Bill may be reached at bill@cunninghamsystems.com

