Tuning When You Can’t Touch The Code...

Michael R. Ault
Senior Seminar Leader
DBAGroup LLC DBA World Tour 2001
HTTP:// WWW.DBAGROUP.NET/

Introduction

In many Oracle shops today third-party applications are the norm. The mgjor problem for
DBAswith these third-party applicationsis that you are not allowed to ater the source
code of the SQL used within the gpplication. Many times the application will generate
SQL statements in an ad-hoc manner that further complicates the tuning picture. This
paper will attempt to provide insghtsinto how to tune Oracle when you can't touch the
code.

Tuning Overview

Everyone who has been in the Oracle DBA profession for any length of time has seen the
graph in figure 1. This graph shows the percentage gains, on the average, from tuning
various aspects of the Oracle database environment.

B Design
20%

W Database
17.5%
Hl System
2.5%
B Application
60%

Figure 1: Performance Gains from Tuning

As can be seen from aquick glance at the graph, 80% of tuning gains are redlized from
proper design and gpplication statement tuning. Unfortunatdly in athird-party gpplication
such asthose provided by SAP, PeopleSoft, Baen, Siebel or Oracle Financials, the DBA
is often forced to ignore bad design and SQL since touching the code is forbidden. This
leaves us with the 20% of gainsthat can be reached through the tuning of the database
and the system.

However, it should be noted that the graph in figure 1 is not gpplicable to al cases and
carries many unseen quadifications with it. The graph assumes that the system and
database have been set up by areasonably qudified Oracle DBA. Of coursethisis not
aways the case and in many locations a qudified Oracle DBA isn't hired until

performance problems manifest themsdlves, thisis usudly just as the syslem goeslive
and afull user load is experienced.

What Can Be done?

Depending on the Oracle verson there are tuning options available to the DBA that don’t
involve tweaking the SQL. Table 1 shows the main tuning options available by Oracle
verson.

Oracl e Version: 7.3.x 8.0.x 8.1.xOptimze Internals
X X X

Optim zer Mbdes

Add Resources

Tune Tabl es and | ndexes
Paral l el Query

Better I|ndexes

| ndex Only Tabl es
Partitioning

New I NI features
Subpartitioning
Qutlines

Resource G oups

Table 1: Tuning Options by Oracle Version

X X X X
XXX XXX XX
XXX X XX XX XXX

Asit should be expected, as the verdgon increases so do the various tuning options
availableto the DBA. Thisindicates that the DBA should always pressto be on the latest,
stable version of Oracle (7.3.4.2, 8.0.6.2.2, 8.1.7.) Let’'s examine these tuning options and
see how they can be gpplied to your databases. Aswe cover the options an attempt will

be made to show how the option is gpplied per version as the feature implementations
change as Oracle matures.

Optimizing Oracle Internals

When beginning to tune a third- party database where the code can't be touched you
should generdly begin with making sure that the memory and database internds are
optimized for performance. If Oracle doesn’t have enough memory, processes or other
resources, the other tuning options won't make much difference generdly spesking. The
options for internds tuning are:

Database Buffer Tuning
Database Writer Tuning
Shared Pool Tuning
Checkpoints

Redo Logs

Rollback Segments

E. Lol v E7 T Dt b el b
Sort AreaSize

Let’s examine each of these areas.

Database Buffer Tuning

When we refer to database buffer tuning we are actudly discussing the tuning of the
memory used to store data used by Oracle processes. All data that passes to users and
then back to the database passes through buffers. If there aren’t enough db block buffers
thereisasgnificant hit on performance. Likewise if the database base block buffers
aren't of the correct sze then they can't be efficiently utilized.

Generdly it is suggested thet the database block buffer size be set to at least 8192 (8K).
Thissize of 8k alows for optima storage of data and index information on most Oracle
platforms. The product of db_block size and db_block buffers should be no lessthan 5-
10% of the total physica data Sze (including indexes) for the system. Usudly the

product of do_block _sizeand db_block_bufferswill be larger than 5-10% of the physica
database sze, but thisis agood generd starting point. Of course the size of the buffer
areaand other shared global area components, should not exceed 50-60% of the available
physical memory or siwapping will result.

One grossindicator of database buffer hedth is cdled the hit ratio. The hit ratio is
expressed as a percent and is calculated using the formula:

(1-(physica reads/(db block getstconsistent gets))) * 100

Traditionaly the information for calculating the database block buffers hit ratio is taken
from the V$SY SSTATS view. However, in versons 7.3.4 and higher of the database the
“physical reads’ parameter was dtered to include “direct reads’ which skewsthe hit ratio
in the downward direction. In Oracle8i the Satistic “direct reads’ is aso recorded so you
can subtract the “direct reads’ from the “physical reads’ to get the correct value with
which to cdculate hit ratio. However, Oracle has provided the

V$BUFFER POOL_STATISTICS view if the DBA runsthe CATPERF.SQL script in
the latest releases in which uncontaminated vaues for “physical reads’ are available and
this view should be used whereit isavalladle.

Hit ratio should generdly be as close to 100% as is possible to achieve, however, in some
cases atificidly high vaues can be recelved if nonselective indexes are used in queries.
Hit ratio is not the best indicator of performance of the database block buffers.

It is suggested that hit ratio be monitored to give a quick look a performance, however
tuning decisions should be made on amore detalled analysis of the buffer area. Using
cursors PL/SQL can be used to track hit ratios as is shown in figure 2.

CURSOR get stat(stat I N VARCHAR2) 1S
SELECT nane, val ue FROM v$sysst at
WHERE nanme = stat;

Supply the cursor with the vari abl es:

"db bl ock gets','consistent gets', 'physical reads’,
‘“direct reads’

h ratio := (1-(p_reads-d reads)/(db_gets + con_gets)))*100;
Or use the cursor:

CURSOR get _hratio IS

SELECT nane, (1-
(physi cal _reads/ (db_bl ock_get s+consi stent _gets)))*100
H RATI O

FROM v$buf fer pool statistics;

Notice the cursor returns a pool name as well, in Oracle8
and above nultiple buffer pools are all owed.

Figure 2: Example Hit Ratio Cdculations

More detailed information about the database blcok buffersis contained in the V$BH
view. The V$BH view of the X$BH table is available in newer versons of Oracle. In
earlier versons the view had to be created using the CATPARR.SQL script.

The X$BH view contains information on the buffers in the database block buffers and
their sates. The gtate information contained in X$BH should be utilized to get atrue
picture of what is happening with the database block buffers. An example sdlect, from:
“ORACLE Performance Tuning Tips & Techniques’, Richard Niemiec, Oracle Press, is
shown in figure 3.

CREATE VI EW BLOCK_STATUS AS
SELECT DECODE(state, 0, ‘FREE,
1, DECODE(Irba_seq,0, ‘AVAILABLE , ‘BEING USED),
3, "BEING USED , state) “BLOCK STATUS”,
COUNT(*) “COUNT”
FROM x$bh
GROUP BY
decode(state, 0, FREE , 1, decode(Ilrba_seq, 0, AVAI LABLE’ ,
" BEI NG USED), 3,’ BEI NG USED , state);

Figure 3: Example X$BH Sdect

If 10-25% buffers are free after 2 hours of use, good. If your database doesn't show a
least 10-25% of the database block buffers free, then you should consider increasing the
vaue of DB_BLOCK_ BUFFERS in 10-25% increments. An dternative select usng the
X$BH from NOTE:1019635.6 on Metdink is shown in figure 4.

create view buffer_status as sel ect
decode(greatest(cl ass, 10), 10, decode(cl ass, 1,"' Data', 2

,"Sort', 4, Header',to_char(class)), ' Rollback') "Cl ass",
sum(decode(bitand(flag,1),1,0,1)) “"Not Dirty",
sum(decode(bitand(flag,1),1,1,0)) "Dirty",
sum(dirty_queue) "On Dirty",count(*) "Total"
from x$bh
group by decode(greatest(class, 10), 10, decode(cl ass, 1, ' Data', 2
,"Sort',4," Header' ,to_char(class)), "' Roll back")
/

Figure 4: Example Sdect Againg X$BH From Metaink

One thing to note about the scriptsin Figures 3 and 4 is that they must be run from the
SY Suser, both create views that can then be used by other users with appropriate grants.

Another source of information about possible database block buffer problemsisthe
VSWAITSTAT view that summarizes the counts of the various wait conditions occurring
in the database. Figure 5 shows an example sdect againg this view.

SELECT
cl ass, " COUNT"
FROM
vPwai t st at
VWHERE
class = ‘data bl ock’;

Figure 5: Example VSWAITSTAT Sdect

It must be stated that data block waits by themsalves do not indicate that an increasein
database block buffersis required. Data block waits can also be caused by improperly set
INITRANS and FREELISTS on heavily used tables. However, in my experience a mgor
portion of data block waits are directly attributable to insufficient database block buffers
in systems where a significant number of data block walits are experienced (100 waits is
not significant, 10000 are.) If you have high hit ratios (in the high 90's) and experience
data block waits with the V$BH view showing 10-25% free buffers, then the waits are
probably due to INITRANS and FREELISTS, otherwise they point & insufficient
database block buffers.

Using the techniques discussed the DBA should be able to properly tune the size of the
DB _BLOCK_BUFFERS parameter to ensure adequate memory is available for the
databases data needs. As with virtudly al other tuning aspects, the setting for

DB _BLOCK_BUFFERS will have to adjusted as the amount of datain the database
increases or decreases and the user data requirements change.

Database Writer Tuning

Database writer tuning involves two basic aress, first, how often writes are accomplished
and how much is written in each write and second, how many writer processes are
designated to service the database output requirements. The V$SY SSTAT view should

aso be usad to cdculate the vaue for the average length of the dirty write queue, values
larger than 100 show need for more DB_ BLOCK _BUFFERS or DB WRITERS or a
need to increase the Sze of the DB_BLOCK_WRITE_BATCH (which becomes an
undocumented parameter beginning with OracleB.)

Figure 6 shows a select taken from “ Oracle Performance Tuning” , Mark Gurry and Peter

Corrigan, O'Rellly Press.

SELECT

DECODE (narme,
DECODE (narme,
FROM v$sysst at

‘write requests’,

WHERE nane IN (‘summed dirty queue | ength’,

val ue>0;

‘summed dirty wite queue length’,
val ue)

val ue)/
“Wite Request Length”

‘write requests’) and

Figure 6: Example Sdect for Dirty Queue Length

The parameters that govern the behavior and number of database writer processes are

shown in table 2.

Parameter

Description

In Oracle7:

DB_WRITERS (2 X #disks)

Sets number of DBWR processes

DB_BLOCK_BUFFERS

Sets number of buffers

DB_BLOCK_CHECKPOINT_BATCH

Number of blocks written per batch
during checkpoint (Obsolete in 8i)

"DB_BLOCK_WRITE BATCH

Sets number of buffers written per 10

_DB_BLOCK_MAX_SCAN_CNT

Sets number of blocks scanned before a
writeistriggered

DISK_ASYNC |0

Allows asynchronous 10

DB FILE SIMULTANEOUS WRITES

Number of amultaneous writesto afile

In Oracle 8.0:

DBWR_10_SLAVES (2 x #disk9)

Sameas DB WRITERS

DB_FILE DIRECT IO _COUNT

Number of blocks assigned to BU and
REC buffers aswel as direct 10 buffers

In OracleSi:

DB_WRITER_PROCESSES (2 x #disks)

Sameas DB WRITERS

DBWR [0 SLAVES

Sets number of dave DBWR processes

DB_FILE DIRECT_IO_COUNT

Number of blocks assigned to BU and
REC buffers aswel as direct 10 buffers

DB BLOCK_LRU LATCHES

Sets number of LRU latches

DB_BLOCK_MAX_DIRTY_TARGET

Satstarget limit of dirty buffers

Many more“ " paraneters

Table 2: Initidization Parameters for DBWR Tuning (Duplicate parameters removed)

Whether you use DB_WRITERS, DBWR_|0O_SLAVES or DB_WRITER_PROCESSES

usudly you won't need more than 2 processes per disk used for Oracle. Generdly

speaking if you exceed twice your number of CPUs for the number of DBWR processes
you will get diminishing returns. In Oracle8i if you have multiple

DB WRITER_PROCESSES you can't have multiple DBWR _|O_SLAVES. You must
aso have a least one DBWR_BLOCK_LRU_LATCH for each DBWR process. If you
st DBWR IO _SLAVESin Oracdle8i then the vauesfor ARCH 10 SLAVES and
LGWR_IO_SLAVES are set to 4 each and DB_WRITER_PORCESSESissetto 1
Slently.

DB _BLOCK_BUFFERS has aready been discussed.

The undocumented parameters (those preceded by an“_" underscore probably shouldn’t
be reset. In some cases reducing thevalueof DB BLOCK_WRITE BATCH may
reduce waits for the DBWR processes.

DB BLOCK_ CHECKPOINT BATCH setsthe number of blocks the database writer
process(es) write with each checkpoint write. A small vaue dlows threading of other
writes but causes longer checkpoint times. A large value gets checkpoints completed
faster but holds up other writes. If you set this value to high Oradle will slently set it to
the vaue of the database writer write batch.

DB BLOCK_MAX _DIRTY_TARGET specifiesthe number of buffersthat are alowed
to be dirty before DBRW will write them dl out to disk. This limits the required time for
instance recovery after a crash but low vaues will cause DBRW to perform extrawork.

DB FILE SIMULTANEOUS WRITES should be set to 4 times the number of disksin
your gtripe sets. When driping is not used st it to 4.

DISK_ASYNC 10 isonly used when asynchronous writes are not stable on your system.
Generdly DISK_ASYNC 10 defaultsto TRUE only st it to false if the previoudy
mentioned condition istrue. If you must set DISK_ASYNC |0 to FALSE, configure
multiple DBRW or DBRW_10_SLAVES to smulate asynchronous 1O.

One indication of DBWR problemsis excessve BUFFER WAITS from VSWAITSTAT.

Y ou can check thiswith alook at buffer waits from Gurry and Corrigan:
SELECT nane, val ue FROM v$sysst at
WHERE nane='free buffer waits’;

Shared Pool Tuning

Perhaps one of the least understood areas of Oracle Shared Global Areaoptimization is
tuning the shared pool. The generaly accepted tuning methodology involves throwing
memory into the pool until the problem goes under. In this section of the paper we will
examine the shared pool and define a method for tuning the shared pool that uses
measurement, not guesswork to drive the tuning methodologies.

What is the shared pool?

Many people know that the shared pool is a part of the Oracle shared globa area (SGA)
but little else, what exactly isthe shared pool? The shared pool contains severa key
Oracle performance related memory aress. If the shared pool isimproperly szed then
overal database performance will suffer, sometimes dramaticaly. Figure 7 diagrams the
shared pool structure located insde the various Oracle SGAs.

Shared Pool Shared Pool
Library Caches Library Caches
Shared Shared
SQL Area SQL Area
PL/SQL PL/SQL
Procedures Procedures
Control Control
Structures Structures
Latches/Locks Latches/Locks
Dictionary (Dictionary)
Caches Caches
Gontrol Structures) on rol Structures
Char Set Char Set
Request and ~ 7 " larage Pool =
q Large Pool >

Response Queues
Used with MTS

\ Request and)
\ Response Queues J
Oracel 7 Shared Pool M \Used with MTS //

Oracle 8 Shared Pool

/ (IO Slaves) ((B/U--Restore)\]

Figure 7: Oracle 7 and Oracle 8 Shared Pool Structures

Asyou can see from examining the structures pictured in Figure 7, the shared pool is
separated into many substructures. The substructures of the shared pool fal into two
broad areas, the fixed sSize areas that for agiven database a a given point in time say
relatively congtant in Sze and the variable Sze areas that grow and shrink according to
user and program requirements.

In Figure 7 the areas indde the library caches substructure are varigble in size while those
outsde the library caches (with the exception of the request and response queues used
with MTS) say relatively fixed in Sze. The Szes are determined based on an Oracle
interna agorithm that ratios out the fixed areas based on overal shared pool size, afew
of the intidization parameters and empiricd determinations from previous versons. In

early versons of Oracle (notably 6.2 and lower versions) the dictionary caches could be
szed individudly adlowing afiner control of this aspect of the shared pool. With Oracle 7
theinterna dgorithm for 9zing the data dictionary cachestook control from the DBA.

The shared pool is used for objects that can be shared among dl users such astable
definitions, reusable SQL (athough non-reusable SQL is aso stored there), PL/SQL
packages, procedures and functions. Cursor information is aso stored in the shared pool.
At aminimum the shared pool must be sized to accommodate the needs of the fixed areas
plus asmal amount of memory reserved for usein parsing SQL and PL/SQL gatements
or ORA-07445 errors will result.

Monitoring and Tuning the Shared Pool

Let me begin this section by stating thet the default vaues for the shared pool sze
initidization parameters are dmost dways too smal by at least afactor of four. Unless
your database is limited to the basic scott/tiger type schemaand your overdl physica

data Szeisless than acouple of hundred megabytes, even the "large’ parameters are far
too small. What parameters control the size of the shared pool? Essentidly only one,
SHARED_ POOL_SIZE. The other shared pool parameters control how the variable
gpace areasin the shared pool are parsed out, but not overal shared pool size. In Oracle8
anew area, the large pool, controlled by the LARGE_POOL_SIZE parameter isaso
present. Generally speaking | suggest you start a a shared pool size of 40 megabytes and
move up from there. The large pool size will depend on the number of concurrent users,
number of multi-threaded server servers and dispatchers and the sort requirements for the
gpplication. Sizes of larger than 140-200 megabytes rarely result in performance
improvement. The mgor problem with the shared pool is over population resulting in too
many SQL areas to be efficiently managed. Usudly when you exceed 5000- 7000 SQL
aress performance in the shared pool tends to degrade.

What should be monitored to determine if the shared poal istoo smdl? For this you need
to wade into the data dictionary tables, specificaly the VSSGASTAT and V$SQLAREA
views. Figure 8 shows areport that shows how much of the shared poal isin use a any
given time the stript isrun.

REM Script to report on shared pool usage
REM
colum shared_pool _used format 9, 999.99
colum shared_pool _size format 9,999.99
colum shared_pool _avail format 9, 999.99
col um shared_pool _pct format 999. 99
@itle80 'Shared Pool Summary'
spool rep_out\ &b\ shared_poo
sel ect

| east (max(b. value)/ (1024*1024), sum(a. bytes)/ (1024*1024))
shar ed_pool _used,

max(b. val ue)/ (1024*1024) shared_pool _si ze,

great est (max(b. val ue)/(1024*1024), sun(a. bytes)/(1024*1024)) -
(sum(a. bytes)/(1024*1024)) shared_pool _avai l

((sum(a. bytes)/ (1024*1024))/ (max(b. val ue)/ (1024*1024)))*100
avai |l _pool _pct

fromv$sgastat a, vS$paraneter b
where (a.pool = shared pool
and a.name not in ('free menory'))

and
b. nane=' shared_pool _si ze'
spool off

ttitle off
Figure 8. Example Script to Show SGA Usage

The script in Figure 8 should be run periodically during times of normd and high usage
of your database. The results will be smilar to Figure 9. If your shared_pool_pct figures
day in the high nineties then you may need to increase the Size of your shared poal,
however, thisisn't dways the case.

Date: 11/18/98 Page: 1
Tinme: 04:16 PM Shared Pool Sunmary SYSTEM
ORTEST1 dat abase

SHARED POOL_USED SHARED POCL_S| ZE SHARED POOL_AVAI L SHARED POCL_PCT

Figure 9: Example Output From Script In Figure 8.

To often dl that is monitored is how much of the shared poal isfilled, no one looks how
isit filled; with good reusable SQL or bad throw away SQL. Y ou must examine how the
paceis being used before you can decide whether the shared pool should be increased in
Sze, decreased in Size or perhaps a periodic flush schedule st up with the Sze remaining
the same. So how can we determine what isin the shared pool and whether it isbeing
properly reused or not? Let'slook at afew more reports.

The firgt report we will examine shows how individua users are utilizing the shared pool.
Before we can run the report asummary view of the V$SQLAREA view must be created,
| unimaginatively cdl thisview the SQL_SUMMARY view. The code for the
SQL_SUMMARY view is shown in Figure 10.

rem FUNCTI ON: Creates summary of v_$sql area and dba_users for use in

rem sqgl mem sql and sql sunmary. sql reports
rem
rem
create or replace view sql _sumuary as
sel ect

username, sharable_nem persistent_mem runtime_nmem
from
sys.v_$sqlarea a, dba_users b

a.parsing_user_id = b.user_id;

wher e

rem
Figure 10: Example SQL Script to Creste A View to Monitor Pool Usage By User

Once the SQL_SUMMARY view is created the script in Figure 11 isrun to generate a
summary report of SQL areas used by user. This shows the distribution of SQL areas and
may show you that some users are hogging a disproportionate amount of the shared pool
area. Usudly, a user that is hogging alarge volume of the shared pool is not using good
SQL coding techniques which is generating alarge number of non-reusable SQL aress.

t. nm-;--g.

rem FUNCTI ON: Generate a summary of SQL Area Menory Usage
rem FUNCTI ON: uses the sqgl summary vi ew.

rem showi ng user SQL nmenory usage

rem

rem sql sum sq

rem

col um areas headi ng Used| Ar eas

col um sharabl e format 999, 999, 999 headi ng Shar ed| Byt es
colum persistent format 999, 999, 999 headi ng Persi stent| Bytes
colum runtine format 999, 999, 999 headi ng Runti ne| Bytes
col um user nane format alb headi ng "User"

colum nmem sum format 999, 999, 999 headi ng Mem Sum

start title80 "Users SQ. Area Menory Use"
spool rep_out\ &db\sql sum
set pages 59 lines 80
break on report
comput e sum of sharabl e on report
conmput e sum of persistent on report
conpute sum of runtine on report
conpute sum of nmem sum on report
sel ect
user name,
sum(shar abl e_nem) Sharabl e,
sum persistent_nen) Persistent,
sum(runtinme_mem Runtinme ,
count (*) Areas,
sum(shar abl e_nmemtper si st ent _memtrunti ne_nmem) Mem sum
from
sqgl _summary
group by usernane
order by 2;
spool off
pause Press enter to continue
cl ear col umms
cl ear breaks
set pages 22 lines 80
ttitle off

Figure 11: Example SQL Script To Report On SQL AreaUsage By User

Example output from the script in Figurell is shown in Figure 12. In the example report
no one user isredly hogging the SQL area. If you have a particular user thet is hogging
SQL aress, the report in Figure 12 will show you what SQL areas they have and what is
in them. This report on the actual SQL area contents can then be used to help teach the
user how to better construct reusable SQL statements.

Date: 11/18/98 Page: 1
Tine: 04:18 PM Users SQL Area Menory Use SYSTEM
ORTEST1 dat abase

Shar ed Per si st ent Runti me Used Mem
User Byt es Byt es Byt es Ar eas Sum
GRAPHI CS_DBA 67, 226 4,640 30, 512 10 102, 378
SYS 830, 929 47,244 153, 652 80 1, 031, 825
SYSTEM 2,364, 314 37, 848 526, 228 63 2,928, 390
sum 3, 262, 469 89, 732 710, 392 153 4,062, 593

3 rows sel ected.

Figure 12: Example Output From Figure 11

In the example output we see that SY STEM user holds the most SQL areas and our
gpplication DBA user, GRAPHICS DBA holdsthe least. Since these reports where run
on my smdl Oracle 8.0.5 database thisis norma, however, usudly the gpplication owner
will hold the largest section of memory in awell designed system, followed by ad-hoc
users using properly designed SQL.. In a Stuation where users aren't using properly
designed SQL statements the ad-hoc users will usualy have the largest number of SQL
areas and show the most memory usage. Again, the script in Figure 13 shows the actud
in memory SQL areas for a specific user. Figure 14 shows the example output from a
report run againgt GRAPHICS USER using the script in Figure 13.

rem
rem FUNCTI ON: Generate a report of SQL Area Menory Usage
rem showi ng SQL Text and nenory catagories

rem

rem sql mem sq

rem

colum sql _t ext format a60 headi ng Text word_w apped
col um shar abl e_nmem headi ng Shar ed| Byt es

col um persistent_nmem headi ng Persistent| Bytes
col um | oads headi ng Loads

col um users format alb headi ng "User"

col um executi ons headi ng " Executi ons"

col um users_executing headi ng "Used By"

start titlel32 "Users SQL Area Menory Use"
spool rep_out\ &b\ sqgl mrem
set |l ong 2000 pages 59 lines 132
break on users
conpute sum of sharabl e_nmem on users
conput e sum of persistent_nem on users
conpute sum of runtinme_nmem on users
sel ect
username users, sql_text, Executions, |oads, users_executing,
shar abl e_nmem persistent_nem
from
sys.v_$sqlarea a, dba users b
wher e

a.parsing_user_id = b.user_id
and b.usernane |ike upper (' %&Ruser_nanme%)
order by 3 desc, 1;
spool off
pause Press enter to continue
cl ear col umms
cl ear conputes
cl ear breaks
set pages 22 lines 80

Figure 13: Example Script To Show Active SQL Areas For a User

Date: 11/18/98
Time: 04:19 PM Users SQL Area Menory Use
ORTEST1 dat abase

Page: 1
SYSTEM

Shared Persi stent

User Text Executions Loads Used By Bytes
CRAPHI CS_DBA BEG N dbns_lob.read (:1, :2, :3, :4); END 2121 1 0 10251
alter session set nls_language= ' AMERICAN nls_territory= 7 1 0 3975
" AMERI CA'" nls_currency= '$' nls_iso_currency= ' AMERI CA'
nls_nuneric_characters= '.,' nls_cal ENDar= ' GREGORI AN'

nls_date_format= 'DD- MON- YY' nls_date_| anguage= ' AMERI CAN'
nl s_sort= "' BI NARY'

BEG N :1 := dbns_| ob. getLength (:2); END, 6 1 0 9290
SELECT TO _CHAR(i mage_seq. nextval) FROM dual 6 1 0 6532
SELECT graphi c_bl ob FROM i nt ernal _graphi cs WHERE 2 1 0 5863
graphi c_i d=10
SELECT RPAD(TO _CHAR(graphic_id),5)||": 1 1 0 7101
' | | RPAD(gr aphi c_desc, 30)||" : '|| RPAD(graphic_type, 10) FROM
internal _graphics ORDER BY graphic_id
SELECT graphi c_bl ob FROM i nt ernal _graphi cs WHERE 1 1 0 6099
graphic_id=12
SELECT graphi c_bl ob FROM i nt er nal _graphi cs WHERE 1 1 0 6079
graphi c_i d=32
SELECT graphi c_bl ob FROM i nt er nal _graphi cs WHERE 1 1 0 6074
graphic_i d=4
SELECT graphi c_bl ob FROM i nt ernal _graphi cs WHERE 1 1 0 5962
graphic_i d=8

sum 67226

Figure 14: Report Output Example For a Users SQL Area

One warning about the script in figure 13, the report it generates can run to severd
hundred pages for a user with alarge number of SQL areas. What things should you
watch for in auser's SQL areas? Firdt, watch for the non-use of bind variables, bind
variable usage is shown by the incluson of variablessuch as":1" or ":B" in the SQL text.
Notice that in the example report in Figure 8 the firg four statements use bind variables,
and, consequently are reusable. Non-bind usage means hard coded vaues such as
'Missing' or 10" are used. Notice that for most of the rest of the statements in the report
no bind variables are used even though many of the SQL statements are nearly identicd.
Thisisone of the leading causes of shared pool misuse and resultsin useful SQL being
drown in tons of non-reusable garbage SQL.

The problem with nonreusable SQL isthat it must till be looked at by any new SQL
inserted into the pool (actudly it's hash vaue is scanned). While a hash value scan may
seem asmall cost item, if your shared pool contains tens of thousands of SQL areasthis
can be a performance bottleneck. How can we determine, without running the report in
Figure 13 for each of possbly hundreds of users, if we have garbage SQL in the shared
pool?

Bytes

The sript in Figure 15 shows aview that provides details on individua users SQL area
reuse. The view can be tailored to your environment if the limit on reuse (currently set at
1) istoo redtrictive. For example, in arecent tuning assgnment resetting the vaue to 12
resulting in nearly 70 percent of the SQL being rgected as garbage SQL, in DSS or data
warehouse systems where rollups are performed by the month, bi-monthly or weekly
vaues of 12, 24 or 52 might be advisable. Figure 16 shows areport script that uses the
view created in Figure 15.

REM

REM View to sort SQL into GOOD and GARBAGE
REM

CREATE OR REPLACE VI EW sql _gar bage AS
SELECT

b. usernane users,
SUM a. shar abl e_nmemt+a. persi stent _nenm) Gar bage,
TO_NUMBER(nul 1) good
FROM
sys.v_$sqlarea a, dba users b
WHERE
(a.parsing_user_id = b.user_id and a. executi ons<=1)
GROUP BY b. user nane
UNI ON
SELECT DI STI NCT
b. usernane users,
TO_NUMBER(nul ') garbage,
SUM c. shar abl e_nmemtc. persi stent _nen) Good
FROM
dba_users b, sys.v_$sqglarea c
WHERE
(b.user _id=c. parsing_user_id and c. executions>1)
GROUP BY b. usernane;

Figure 15: Example Script to Create the SQL_ GARBAGE View

REM

REM Report on SQ. Area Reuse by user

REM

col utm gar bage format 9,999, 999, 999 headi ng ' Non- Shared SQL'
col utm good format 9,999,999, 999 headi ng ' Shared SQL'

col um good_per cent format 999. 99 headi ng ' Percent Shared

set feedback off
break on report
conput e sum of garbage on report
conmput e sum of good on report
conmput e avg of good_percent on report
@itle80 'Shared Pool Uilization'
spool rep_out\&db\sqgl _garbage
sel ect

a.users,

a. gar bage,

b. good,

(b. good/ (b. good+a. gar bage)) *100 good_per cent
from

sqgl _garbage a, garbage b
wher e
a. users=b. users
and
a.garbage is not nul
and
b.good is not nul
/
spool off

set feedback off
cl ear col ums

cl ear breaks

cl ear conputes

Figure 16: Example Report Script For SQL Reuse Statistics

The report script in Figure 16 shows at a glance (well, maybe along glance for asystem
with hundreds of users) which users aren't making good use of reusable SQL. An
example report output is shown in Figure 17.

Date: 11/18/98 Page: 1
Tine: 04:16 PM Shared Pool Wilization SYSTEM
ORTEST1 dat abas

USERS Non- Shared SQ Shared SQ. Percent Shared
GRAPH CS_DBA 27,117 38, 207 58. 49
SYS 302, 997 575, 176 65. 50
SYSTEM 1,504, 740 635, 861 29.70
avg 51.23
sum 1, 834, 854 1, 249, 244

Figure 17: Example Report From Showing SQL Reuse Statistics

Noticein Figure 17 that the GRAPHICS DBA user only shows 58.49% shared SQL use
basad on memory footprints. From the report in Figure 14 we would expect alow reuse
vauefor GRAPHICS DBA. The low reuse value for the SYSTEM user isdueto itsuse
as amonitoring user, the monitoring SQL is designed to be used once per day or so and
was not built with reuse in mind.

Putting it All In Perspective

So what have we seen so far? We have examined reports that show both gross and
detailed shared pool usage and whether or not shared areas are being reused. What can
we do with this data? |dedlly we will use the results to size our shared pool properly.
Let's st out afew generd guiddines for shared pool szing:

Guideline 1. If gross usage of the shared poal in a nortad-hoc environment exceeds 95%
(risesto 95% or greater and stays there) establish a shared pool size large enough to hold

the fixed size portions, pin reusable packages and procedures. Increase shared pool by
20% increments until usage drops below 90% on the average.

Guiddine 2: If the shared pool shows a mixed ad-hoc and reuse environment establish a
shared pool size large enough to hold the fixed size portions, pin reusable packages and
edtablish acomfort level above thisrequired leve of pooal fill. Establish aroutine flush
cycleto filter non-reusable code from the pool.

Guideline 3: If the shared pool shows that no reusable SQL is being used establish a
shared pool large enough to hold the fixed size portions plus a few megabytes (usudly
not more than 40) and alow the shared pool modified least recently used (LRU)
agorithm to manage the pooal.

Inguidelines 1, 2 and 3, start at around 40 megabytes for a standard size system. Notice
inguiddine 2 it is stated thet a routine flush cyde should be indituted. Thisfliesin the

face of what Oracle Support pushesin their shared pool white papers, however, they

work from the assumption that proper SQL is being generated and you want to reuse the
SQL present in the shared poal. In amixed environment where there is a mixture of
reusable and non-reusable SQL the nonreusable SQL will act as a drag againg the other
QL (I cdl this shared pool thrashing) unlessit is periodicaly removed by flushing.

Figure 18 shows a PL/SQL package which can be used by the DBMS JOB job queuesto
periodicaly flush the shared pool only when it exceeds a specified percent full.

CREATE OR REPLACE PROCEDURE flush_it(
p_free N NUMBER, numruns IN NUMBER) IS

CURSOR get _share IS
SELECT
LEAST(MAX(b. val ue)/ (1024*1024), SUM a. byt es)/ (1024*1024))
FROM v$sgastat a, v$paraneter b
WHERE (a. pool =" shared pool '’
AND a.nanme <> ('free nenory'))
AND b. nane = 'shared_pool _size';

CURSOR get _var 1S

SELECT wval ue/ (1024*1024)

FROM v$par anet er

WHERE nane = 'shared_pool _size';

- Follow ng cursors from Steve Adans Ni ce_fl ush

CURSOR reused_cursors IS
SELECT address || ',' || hash_val ue
FROM sys. v_$sql ar ea
WHERE executions > num.runs;
cursor_string varchar2(30);

CURSOR cached_sequences | S
SELECT sequence_owner, sequence_nane
FROM sys. dba_sequences
WHERE cache_si ze > 0;

_

sequence_owner varchar2(30);
sequence_nane varchar 2(30);
CURSOR candi date_objects | S
SELECT kgl naobj, decode(kgl obtyp, 6, 'Q, '"P)
FROM sys. x_$kgl ob
WHERE inst_id = userenv('lnstance') AND
kgl naown = ' SYS' AND kgl obtyp in (6, 7, 8, 9);
obj ect _name varchar2(128);
obj ect _type char(1);

-- end of Steve Adans Cursors

t odays_date DATE;

memratio NUMBER,
share_mem NUMBER
vari abl e_nmem NUMBER,
cur | NTEGER

sgl _com VARCHAR2(60);
row_proc NUMBER
BEG N
OPEN get _share;
OPEN get _var;
FETCH get _share | NTO share_mem
FETCH get _var | NTO vari abl e_nem
mem ratio: =share_mem vari abl e_nem
IF nemratio>p_free/ 100 THEN

-- Followi ng keep sections from Steve Adanms ni ce_fl ush
BEG N
OPEN reused_cursors;
LOOP
FETCH reused_cursors | NTO cursor_string;
EXIT WHEN r eused_cur sor s%ot f ound,;
sys. dbns_shared_pool . keep(cursor _string, 'C);
END LOOP
END;
BEG N
OPEN cached_sequences;
LOOP
FETCH cached_sequences | NTO sequence_owner, sequence_nane;
EXIT WHEN cached_sequences%ot f ound;

sys. dbns_shared_pool . keep(sequence_owner || '.' || sequence_nane,
'Q);
END LOOP
END;
BEG N
OPEN candi dat e_obj ect s;
LOOP

FETCH candi dat e_obj ects | NTO obj ect _nanme, object_type;

EXIT WHEN candi dat e_obj ect s%ot f ound,;

sys. dbns_shared_pool . keep(' SYS." || object_nane, object_type);
END LOOP
END;

- end of Steve Adans section

cur: =DBMS_SQL. OPEN_CURSOR;
sql _com =' ALTER SYSTEM FLUSH SHARED POQOL' ;
DBMS_SQL. PARSE(cur, sql _com dbms_sql . v7);
row_proc: =DBMS_SQL. EXECUTE(cur) ;
DBMS_SQL. CLOSE_CURSOR(cur) ;
END | F;
END flush_it;

Figure 18: Example Script to Run a Shared Pool Hush Routine

The command st to perform a flush on a once every 30 minute cycle when the pool
reaches 95% full would be:

VAR ABLE x NUMBER

BEG N

dbrrs_j ob. submi t (

:X, "BEA N flush_it(95); END; ', SYSDATE, ' SYSDATE+(30/1440)");
END;

/

COW T,

(Always commit after assgning ajob or the job will not be run and queued)

Thereis aways a discussion as to whether thisredlly does help performanceso | setup a
test on a production ingtance where on day 1 | did no automated flushing and on day 2 |
ingtituted the automeated flushing. Figure 19 shows the graphs of performance indicators,
flush cydes and users.

Performance Indicator

600

500

400
300

1/100 Sec

— Day?

—Day 1

200

100

0

Measurement

Measurement

120
100
80
60
40
20
0

Meg

Meg - Shared SQL

—Day 2

—Day 1

J/\//\\ /\\1
|

\
A —

Measurement

Measurement

250
200
150

Number

100

50

0

Number Of Users

~—

—Day 2

/ \
/

Measurement

Measurement

Day 1

Figure 19: Graphs Showing Effects of Hushing

The thing to notice about the graphsin Figure 19 isthe overdl trend of the performance
indicator between day 1 and day 2. On day 1 (the day with an initid flush asindicated by
the steep plunge on the poal utilization graph followed by the buildup to maximum and

the flattening of the graph) the performance indicator shows an upward trend. The
performance indicator is ameasure of how long the database takes to do a specific set of
tasks (from the Q Diagnogtic tool from Savant Corporation). Therefore an increase in the
performance indicator indicates anet decrease in performance. On day 2 the overdl trend
is downward with the average value less than the average value from day 1. Overdl the
flushing improved the performance as indicated by the performance indicator by 10 to 20
percent. Depending on the environment | have seen improvements of up to 40-50 percent.

One thing that made the analysis difficult was that on day 2 there were severa large baich
jobs run which weren't run on day 1. The results till show that flushing has a podtive
effect on performance when the database is amixed SQL environment with alarge
percentage of non-reusable SQL aress.

Guiddine 3 aso brings up an interesting point, you may aready have over dlocated the
shared pool, in this case guideline 3 may result in you decreasing the size of the shared
pool. In this situation the shared pool has become a cesspoa filled with nothing but
garbage SQL. After dlocating enough memory for dictionary objects and other fixed
areas and ensuring that the standard packages and such are pinned, you should only
maintain afew megabytes above and beyond thislevel of memory for SQL statements.
Since none of the codeis being reused you want to reduce the hash search overhead as
much as possible, you do this by reducing the size of the available SQL area memory so
as few anumber of statements are kept as possible.

What to Pin

Indl of the guiddines stated so far | mention that the memory is usudly alocated above
and beyond that needed for fixed sze areas and pinned objects. How do you determine
what to pin? Generdly speaking any package, procedure, function or cursor thet is
frequently used by your application should be pinned into the shared pool when the
database is started. | suggest adding a“ null” startup function to every in house generated
package it essentidly looks like Figure 20.

FUNCTI ON start _up
RETURN nunber 1S
Ret NUMBER: =1,
BEG N

Ret : =0

RETURN r et ;

END start _up;

Figure 20: Example Null Startup Function

The purpose of the null startup function isto provide a touch point to pull the entire
package into the shared pool. This alows you to create a startup SQL procedure that pulls
al of the goplication packages into the pool and pins them using the

DBMS _SHARED_POOL package. The DBMS _SHARED_POOL package may have to
be built in earlier releases of Oracle. The DBMS _SHARED_ POOL package is built using
the DBMSPOOL.SQL and PRVTPOOL.PLB scripts located in (UNIX)
$ORACLE_HOME/rdbmg/admin or (NT) x:\orant\rdbms\admin (where x: isthe home
drivefor your ingdl).

How do you determine what packages, procedures of functionsto pin? Actudly, Oracle
has made this easy by providing the V$DB_OBJECT CACHE view that showsdl
objects in the pool, and, more importantly, how they are being utilized. The script in
Figure 21 provides aligt of objects that have been loaded more than once and have
executions greater than one. Some example output from this script is shown in figure 22.
A rule of thumb isthat if an object is being frequently executed and frequently reloaded it
should be pinned into the shared poal.

rem

rem FUNCTI ON: Report Stored Object Statistics

rem

col utm owner format all headi ng Schema

col um nane format a30 headi ng Obj ect | Nane
col utMm nanespace headi ng Name| Space
colum type headi ng Obj ect| Type
col um kept format a4 headi ng Kept

col um shar abl e_nmem format 999, 999 headi ng Shar ed| Menory
col umm executi ons format 999, 999 headi ng Executes

set lines 132 pages 47 feedback off
@itlel32 'Oracle Objects Report'
break on owner on namespace on type
spool rep_out/ &b/ o_st at
sel ect
OMNER,
NAMESPACE
TYPE,
NAME,
SHARABLE_MEM
LOADS
EXECUTI ONS,
LOCKS,
PI NS,
KEPT
from
v$db_obj ect _cache
wher e
type not in (
" NOT LOADED , ' NON- EXI STENT' ,' VI EW , ' TABLE' , ' SEQUENCE')
and executions>0 and | oads>1 and kept="NO
order by owner, nanespace, type, executi ons desc;
spool off
set lines 80 pages 22 feedback on
cl ear col umms

cl ear breaks

E. Lo | s L Ll B
ttitle off

Figure 21: Script to Show Objects Which Should Be Kept

The output from the script in Figure 21 is shown in Figure 22. Notice the objects with
high executions.

Date: 11/20/98 Page: 1
Time: 09:59 AM Oracle Objects Report AULTM
AGCD dat abase
Name Obj ect Obj ect Shar ed
Schema Space Type Nane Menory LOADS Execut es LOCKS PINS Kept
SYS BODY PACKAGE BODY DBMS_EXPORT_EXTENSI ON 6, 957 1 1,338 1 0 NO
DBMS_SQL 11, 016 1 50 1 0 NO
DBMS_SYS_SQL 21, 428 1 50 1 0 NO
DBMS_DEFER_| MPORT_I NTERNAL 4,070 1 50 1 0 NO
STANDARD 26, 796 1 50 1 0 NO
DBMS_APPLI CATI ON_I NFO 4,585 1 8 1 0 NO
DBMS_OQUTPUT 8,799 1 1 1 0 NO
TABLE/ PROCEDURE PACKAGE DBMS_EXPORT_EXTENSI ON 12, 269 1 1,355 1 0 NO
DBMS_DEFER_| MPORT_| NTERNAL 10, 662 1 51 1 0 NO
DBMS_SQL 6, 960 1 50 1 0 NO
STANDARD 118, 556 1 50 1 0 NO
DBMVS_SYS_SQL 7,472 1 50 1 0 NO
DBMS_APPLI CATI ON_I NFO 11, 569 1 9 1 0 NO
DBMS_OQUTPUT 13,391 1 1 1 0 NO

Figure 22: Example Output From the Script In Figure 21.

Unfortunatdly in my active instance | aready have the objects pinned that are required,
but the example report in Figure 22 taken from one of my less active ingances fill shows
the concept. Note that you only have to pin the package, not the package and package

body.

Guideline 4: Determine usage patterns of packages, procedures, functions and cursors
and pin those that are frequently used.

The Shared Pool and MTS

The use of the multi-threaded server option (MTYS) in Oracle requires a sometimes
dramatic increase in the Sze of the shared pool. Thisincrease in the size of the shared
pool caused by MTS is due to the addition of the user globa areas required for sorting
and message queues. If you are usng M TS you should monitor the VSSGASTAT vaues
for MTS related memory areas and adjust the shared pool memory alocations
accordingly.

Note that in Oracle 8 you should make use of the large pool feature to pull the user globa
areas (UGA) and multi-threaded server queues out of the shared pool areaif MTSis
being used. This prevents the fragmentation problems that have been reported in shared
poolswhen MTS s used without alocating the large pool. The pardld query option
(PQO) in Oracle8 aso makes use of the large pool area, depending on the number of
users and degree of pardld, the large pool may require over 200 megabytes by itsdlf ina
PQO environment.

Sizing the large pool can be complex. The large pooal, if configured must be &t least 600
kilobytesin sze. Usudly for most MTS applications 600k is enough. However, if PQO is
a0 usad in your Oracle8 environment then the size of the large pool will increase
dramaticaly. The VSSGASTAT dynamic performance view has anew columnin

Oracle8, POOL. The POOL column in the V$SGASTAT view is used to contain the pool
areawhere that particular type of object is being stored. By issuing a summation sdect
againg the VSSGASTAT view a DBA can quickly determine the size of the large pool
area currently being used.

SELECT nanme, SUM bytes) FROM V$SGASTAT WHERE pool =' LARGE POOL' GROUP BY RCLLUP(nane);

The above select should be used when an "ORA-04031:Unable to alocate 16084 bytes of
shared memory ("large pool™, "unknown object”, "large pool hed', "PX large poal™) "

error isreceived during operation with alarge pool configured (the number of bytes
Specified may differ). When the above sdlect is run, the resulting summary number of

bytes will indicate the current sze of the pool and show how close you are to your
maximum as specified in the initidization parameter LARGE_POOL_SIZE. Generdly

increasing the large_pool by up to 100% will diminate the ORA-04031 errors.

Oracle8i provides for automated szing of the large pool. If
PARALLEL_AUTOMATIC TUNING issatto TRUE or if

PARALLEL MAX_ SERVERSis st to anon-zero vaue thenthe LARGE POOL_SIZE
will be calculated, however, it can be over-ridden with a manuadly specified entry in the
initidization file. Indeed, if an ORA-27102: Out of Memory error is received when you

st ether of these parameters (or both) you must either manualy set

LARGE _POOL_SIZE or reduce the value for PARALLEL _MAX_SERVERS. The
following formula determines the set point for the LARGE_POOL_SIZE if it isnot
manually set:

(DOPA2* (41 - 1) +2* DOP* 3+4* DOP(| - 1)) * PEMS* USERS
Where
DOP — Degree of Pardld caculated from #CPU/NODE * #NODES
| — Number of threads/CPU
PEMS — Pardld execution message Sze — set with
PARALLEL_EXECUTION_MESSAGE_SIZE
initidization parameter, usualy defaultsto 2k or 4k but can be larger.
USERS — Number of concurrent users using pardle query

For a2k PEMSwith 4 concurrent users for asteadily increasing vaue for DOP the
memory Sze isaquadratic function ranging from around 4 meg for 10 CPUsto 120 meg
with 70 CPUs. This memory requirement is demonstrated in Figure 23.

140 IVICTIITVUIELY Ao A 1T _UitlvLivil vl _ w1 Yo
120 /L
100

80 A
60

40 //

20

0 —r7

0 10 20 30 40 50 60 70 80
| ——MEM |

Figure 23: Example Chart for 2k PEM S and 4 Concurrent Users Showing Memory
Requirements as Number of CPUs Increases

Onmy NT4.0 Oracle8i, 8.1.3 test system | have 2 CPUs, set at 2 threads per cpu (DOP of
4) and then 4 threads per cpu (DOP of 8), message buffer of 4k and | performed multiple
tesdsincreasing the PARALLEL_MAX_ SERVERS nitidization parameter to see what

the resulting increase in LARGE._POOL_SIZE would be, the results were:

PARALLEL MAX SERVERS DOP 4 LARGE POOL_SIZE DOP 8 LARGE_POOL_SIZE
4 685,024 bytes 685,024 bytes
8 857,056 bytes 857,056 bytes
16 1,151,968 bytes 1,545,184 bytes

Notice that for a small number of CPUs the large pool size increase from an increasein
pardld max serversisnt affected by changes in the number of pardld threads until the
vaue of threadsislarge in respect to the number of CPUs.

For non-PQO systems a generd rule of thumb is 5K of memory for each MTS user for
the large pool area.

Guideline 5: In Oraclerwhen using MTS increase the shared pool size to accommodate
MTS messaging and queuing as well as UGA requirements. In OracleB use the Large
Pool to prevent MTS from effecting the shared pool aress.

A Matter Of Hashing

We have discussed hashing in prior sections, essentialy each SQL statement is hashed
and this hash value is then used to compare to dready stored SQL aress, if amatching
hash is found the statements are compared. The hash is only caculated based on the first
200 or so charactersin the SQL statement, so extremely long SQL statements can result
in multiple hashes being the same even though the stored SQL is different (if the first 200
or o characters in each statement are identica). Thisis another argument for using stored
procedures and functions to perform operations and for the use of bind variables. In 8.0
the hash valueis caculated on the first 100 and last 100 characters reducing the chances
of multiple identical hash values for different SQL statements. In 8i the hash is caculated
on the entire SQL text so multiple identical hashes should never occur.

If the number of large, nearly identica statementsis high, then the number of timesthe
parser has to compare anew SQL statement to existing SQL statements with the same

hash value increases. Thisresultsin a higher statement overhead and poorer performance.
Y ou should identify these large statements and encourage users to re-write them using
bind variables or to procedurdize them using PL/SQL. The report in Figure 24 will show
if you have a problem with multiple statements being hashed to the same value.

Rem

rem FUNCTI ON: Shows by user who has possible

rem SQL reuse problens

rem

colum total hash headi ng ' Total Hash| Val ues
col um sane_hash headi ng ' SQL Wt h| Sanme Hash'
colum u_hash_ratio format 999. 999 headi ng ' SQL Shari ng| Hash'

start title80 ' Shared Hash Val ue Report
spool rep_out\&&db\ shared_hash. | st
break on report
conmput e sum of total _hash on report
conpute sum of sane_hash on report
sel ect
a. username,
count (b. hash_val ue) total hash,
count (b. hash_val ue) - count (uni que(b. hash_val ue)) sane_hash,
(count (uni que(b. hash_val ue))/ count (b. hash_val ue))*100 u_hash_ratio
from
dba_users a,
v$sgl area b
wher e
a. user _i d=b. parsing_user_id
group by
a. username;
cl ear conputes

Figure 24: Example Script to Report on Hashing Problems

The script in Figure 24 produces areport Smilar to that shown in Figure 25. The report in
Figure 25 shows which users are generating SQL that hashes to the same vaues. Once
you have a user isolated you can then run the script in Figure 26 to find the bad SQL
Satements.

Date: 11/20/98 Page: 1
Time: 11:40 AM Shared Hash Val ue Report AULTM
DCARS dat abase

Total Hash SQL Wth SQ. Sharing

USERNAME Val ues Sanme Hash Hash
AULTM 129 0 100. 000
DCARS 6484 58 99. 105
MCNAI RT 20 0 100. 000
PASSMAP 2 0 100. 000
QDBA 109 0 100. 000
RCAPS 270 0 100. 000
RCOM 342 7 97. 953
REPORTS1 28 0 100. 000

SECURI TY_ADM N 46 0 100. 000
SYS 134 0 100. 000
sum 7564 65

Figure 25: Hash Report

A quick glance a the report in Figure 25 shows that we need to look at the DCARS user
to correct hashing problems they might be having and improve the reuse of SQL inthe
shared pool. However, look at the number of hash areas this user has accumulated, 6,484,
if I run the report from Figure 13 it will out weigh the paper verson of the Oracle
documentation set. A faster way to find the hash vaues would be to do a sdlf join and
filter out the hash vaues that are duplicate. Sounds easy enough, but remember, the V$
tables have no rowids so you can't use the classic methods, you have to find another
column that will be different when the HASH_VALUE column in VSSQLAREA isthe
same. Look at the sdlect in Figure 26.

sel ect distinct a.hash_value fromv$sqlarea a, v$sqlarea b, dba_users c
wher e a. hash_val ue=b. hash_val ue and

a.parsing_user_id = c.user_id

and c.usernanme=' DCARS' and <€ change to user you are concerned about

a. FIRST_LOAD TIME != b. FI RST_LOAD_TI ME

Figure 26. Example Sdect To Determine Duplicate Hash Vaues

Figure 27 has an example output from the above sdlect.

DCARS: col unmm hash_val ue format 99999999999
DCARS: set echo on
DCARS: select distinct a.hash_value fromv$sql area a,
v$sql area b,
2 dba_users c
3 where a. hash_val ue=b. hash_val ue and
4 a.parsing_user_id = c.user_id
5 and c.usernane=' DCARS and
6* a.FIRST_LOAD TIME != b. FIRST_LOAD_TI ME

HASH_VALUE
- 1595172473
-1478772040
- 1344554312

-941902153

- 807684425

-507978165

-270812489

441376718

784076104
979296206
1765990350
1945885214

Figure 26 Example Hash Sdlect Output

Once you have the hash vaue you can pull the problem SQL statements from either
V$SQLAREA or V$SQLTEXT very easly, look at Figure 27.

DCARS: sel ect sql _text from v$sql area where
hash _val ue='441376718" ;

SQL_TEXT
SELECT regi on_code, regi on_deal er _num consol i dat ed_deal er _num
deal er _nane, deal er _st at us_code, deal er _type_code,

mach_credit _code,
parts_credit_code FROM dealer WHERE regi on_code = '32' AND
regi on_deal er_num = ' 6433’

SELECT regi on_code, regi on_deal er _num consol i dat ed_deal er _num
deal er _nane, deal er _status_code, deal er _type_code,

mach_credit _code,

parts_credit_code FROM deal er WHERE regi on_code = '56" AND

regi on_deal er_num = ' 6273'

Figure 27: Example of Statements With Identical Hash Vaues But Different SQL

Long statements require specid care to seethat bind variables are used to prevent this
problem with hashing. Another help for long Statements is to use views to store values at
an intermediate state thus reducing the size of the variable portion of the SQL. Noticein
the example select in Figure 27 that the only difference between the two identically

hashed statementsis that the “region_code’ and “region_dedler_num” comparison values
are different, if bind variables had been used in these statements there would only have
been one entry instead of two.

Guideline 6: Use bind variables, PL/SQL (procedures or functions) and views to reduce
the size of large SQL statements to prevent hashing problems.

Monitoring Library and Data Dictionary Caches

I've spent mogt of this article looking at the shared SQL area of the shared poal. Let's
wrap up with ahigh level look & the library and data dictionary caches. The library cache
areais monitored viathe V$LIBRARY CACHE view and contains the SQL area, PL/SQL
area, table, index and cluster cache aress. The data dictionary caches contain cache area
for dl datadictionary related definitions.

The script in Figure 28 creates areport on the library caches. The items of particular
interest in the report generated by the script in Figure 28 (shown in Figure 29) are the

various ratios.

rem

remTitle: |ibcache. sq

rem

rem FUNCTI ON: Generate a library cache report
rem

col utMm nanespace headi ng "Li brary Object™
colum gets format 9,999, 999 heading "Gets"

colum gethitratio format 999. 99 heading "Get Ht%
colum pins format 9, 999,999 headi ng "Pi ns"

colum pinhitratio format 999. 99 heading "Pin Ht%
colum rel oads format 99, 999 headi ng " Rel oads"

columm invalidations format 99, 999 heading "lnvalid"

colum db format alO
set pages 58 lines 80
start title80 "Library Caches Report"”
define output = rep_out\&b\lib_cache
spool &out put
sel ect
nanespace
gets,
gethitrati 0*100 gethitrati o,
pi ns,
pi nhitratio*100 pinhitratio,
REL OADS,
| NVALI DATI ONS
from
v$librarycache
/
spool off
pause Press enter to continue
set pages 22 lines 80
ttitle off
undef out put

Figure 28: Example Script To Monitor The Library Caches

Look at the example output from the script in Figure 28 in Figure 29. In Figure 29 we see
that al Get Hit% (gethitratio in the view) except for indexes are greater than 80-90
percent. Thisisthe desired gate, the value for indexesis low because of the few accesses
of that type of object. Notice that the Pin Hit% is also greater than 90% (except for
indexes) thisis aso to be desired. The other gods of tuning this area are to reduce reloads
to as smdl avaue as possble (thisis done by proper szing and pinning) and to reduce
invalidations. Invaidations happen when for one reason or another an object becomes
unusable. However, if you mugt use flushing of the shared pool reloads and invalidations
may occur as objects are swapped in and out of the shared pool. Proper pinning can

reduce the number of objects reloaded and invalidated.

Guideline 7: In asystem where there is no flushing increase the shared pool szein 20%
increments to reduce reloads and invaidations and increase hit ratios.

Date: 11/21/98 Page: 1
Time: 02:51 PM Li brary Caches Report SYSTEM
ORTEST1 dat abase

Li brary Obj ect Gets Get Hit% Pins Pin Hit% Rel oads Invalid
SQL AREA 46, 044 99. 17 99, 139 99. 36 24 16
TABLE/ PROCEDURE 1, 824 84.59 6, 935 93.21 3 0
BODY 166 93. 98 171 91. 23 0 0
TRI GGER 0 100. 00 0 100. 00 0 0
| NDEX 27 .00 27 .00 0 0
CLUSTER 373 98. 12 373 97.59 0 0
OBJECT 0 100. 00 0 100. 00 0 0
Pl PE 0 100. 00 0 100. 00 0 0

Figure 29: Example Of The Output From Library Caches Report

The data dictionary caches used to be individualy tunable through severd initidization
parameters, now they are interndly controlled. The script in Figure 30 should be used to
monitor the overal hit ratio for the deta dictionary caches.

rem
remtitle: ddcache. sq

rem FUNCTI ON: report on the v$rowcache table
rem Hl STORY: created sept 1995 MRA

rem

start title80 "DD Cache Hit Ratio"

spool rep_out\ &b\ ddcache

SELECT (SUM getmi sses)/ SUM gets)) RATIO
FROM V$ROWCACHE

/

spool off

pause Press enter to continue

ttitle off

Figure 30: Script to Monitor the Data Dictionary Caches

The output from the script in Figure 30 is shown in Figure 31.

Date: 11/21/98 Page: 1
Time: 02:59 PM DD Cache Hit Ratio SYSTEM
ORTEST1 dat abase
RATI O
. 01273172

Figure 31: Example Output From Data Dictionary Script

The ratio reported from the script in Figure 30 should dways be lessthan 1. Theratio
corresponds to the number of times out of 100 that the database engine sought something
from the cache and missed. A dictionary cache missis more expensive than a data block
buffer miss so if your ratio gets near 1 increase the size of the shared pool since the
interna dgorithm isn't dlocating enough memory to the data dictionary caches.

Guiddine 8: In any shared pooal, if the overdl data dictionary cache missratio exceeds 1
percent, incresse the size of the shared pool.

In Summary

In section of the tuning paper we have discussed ways to monitor for what objects should
be pinned, discussed multi-threaded server , looked at hashing problems and their
resolution as well as examined classic library and data dictionary cache tuning. Including
the guiddines from last months article we have established 8 guiddines for tuning the
Oracle shared poal:

Guiddine 1: If gross usage of the shared pool in a non-ad-hoc environment exceeds 95%
(risesto 95% or greater and stays there) establish a shared pool size large enough to hold
the fixed sSize portions, pin reusable packages and procedures. Gradualy increase shared
pool by 20% increments until usage drops below 90% on the average.

Guideline 2: If the shared pool shows a mixed ad-hoc and reuse environment, establish a
shared pool sze large enough to hold the fixed size portions, pin reusable packages and
establish a comfort level above thisrequired leve of pooal fill. Establish aroutine flush
cydeto filter nonreusable code from the pool.

Guideline 3: If the shared pool shows that no reusable SQL is being used establish a
shared pool large enough to hold the fixed sze portions plus afew megabytes (usudly
not more than 40) and alow the shared pool modified least recently used (LRU)
agorithm to manage the pool. (dso see guiddine 8)

Guideline 4: Determine usage patterns of packages, procedures, functions and cursors
and pin those that are frequently used.

Guideline5: In Oracle7when usng MTS increase the shared pool size to accommodate
MTS messaging and queuing as well as UGA requirements. In Oracle8 use the Large
Pool to prevent MTS from effecting the shared pool aress.

Guiddine 6: Use bind variables, PL/SQL (procedures or functions) and views to reduce
the sze of large SQL statements to prevent hashing problems.

Guid€eline 7: In asystem where there is no flushing increase the shared pool size in 20%
increments to reduce reloads and invalidations and increase object cache hit ratios.

Guideline 8: In any shared poal, if the overall data dictionary cache miss ratio exceeds 1
percent, increase the size of the shared pool.

Using these guiddines and the scripts and techniques you should be well on the way
towards awell tuned and well performing shared poal.

Tuning Checkpoints

Checkpoints provide for concurrency in an Oracle database. Checkpoints write out
timestamp and SCN information as well as dirty blocks to the database files.Pre-7.3.4 the
checkpoint process was optiond, now it is required.

Checkpoints provide for rolling forward after a system crash. Data is applied from the
time of the last checkpoint forward from the redo entries. Checkpoints aso provide for
reuse of redo logs. When aredo log isfilled the LGWR process automatically switchesto
the next available log. All datain the now inactive log is written to disk by an automatic
checkpoint. Thisfreesthe log for reuse or for archiving.

Checkpoints occur when aredo log isfilled, when the INIT.ORA parameter
LOG_CHECKPOINT_INTERVAL ORACLETY isreached (Total byteswritten to aredo
log), or the elapsed time has reached the INIT.ORA parameter
LOG_CHECKPOINT_TIMEOUT expressed in seconds or every three seconds, or when
an ALTER SY STEM command isissued with the CHECKPOINT option specified.

While frequent checkpoints will reduce recovery time, they will aso decrease
performance. Infrequent checkpoints will increase performance but increase required
recovery times. To reduce checkpoints to only happen on log switches, set
LOG_CHECKPOINT_INTERVAL to larger than your redo log Size, and set
LOG_CHECKPOINT_TIMEOQOUT to zero.

If checkpoints still cause performance problems, set the INIT.ORA parameter
CHECKPOINT_PROCESS to TRUE to start the CKPT process running. Thiswill free
the DBWR from checkpoint duty and increase performance. The INIT.ORA parameter
PROCESSES may also have to be increased. Note that on Oracle8 and greater the
checkpoint processis not optiond and is started aong with the other Oracle instance
processes.

Another new option with Oracle8i is the concept of fast-start checkpointing. In order to
configure fast-gtart checkpointing you set the initidization parameter

FAST_START 10 TARGET. The FAST_START |0 TARGET parameter sets the
number of 10 operations that Oracle will attempt to limit itsdlf to before writing a
checkpoint. This featureis only available with Oracle 8i Enterprise Edition.

Other initidization parameters that control checkpointing are:

LOG _BUFFER_SIZE — should be set such that there aren’t large numbers of
amall writes and the overal write tiome isn't too long, usudly not more than 1
megabyte.

LOG _SMALL_ENTRY_MAX_SIZE (Gonein 8i) satsthe szein bytesfor the
largest copy to the redo buffers that occurs under the redo alocetion latch.
Decreasing the Size of this parameter will reduce cortention for the redo

dlocation latch.

LOG_SIMULTANEOUS COPIES (Goneto“_” in 8i) st to twice the number of
CPUs to reduce contention for the redo copy latches by increasing the number of
latches.

LOG_ENTRY_PREBUILD_THRESHOLD(Goneto“_” in 8.0, gonein 8i) sets
the number of bytes of redo to gather before copying to the log buffer. For multi-
CPU sygems increasing this vaue can be beneficid.

Tuning Redo Logs
To tune redo logs you should:

Actudly tune LGWR process to optimize log writes

LGWR writes when log buffers 1/3 full, or on COMMIT

Tune redo log Size based on transaction Sze, too smal a sze results in frequent
inefficient 10, too large results in too long awrite

Be sure logs are not in contention with each other or other files

To Determine average transaction Sze as far as redo buffer writes:
(redo size + redo wastage)

Redo writes
Use data from V$SY SSTAT. Size your log buffersto near this size, error on too much
rather than too little.

Size actud redo logs such that they switch every thirty minutes, or based on the amount
of datayou can afford to lose (loss of the active redo log resultsin loss of its data.)

Redo logs maintain a complete history of data and database changing transactions. Redo
logs are criticd for recovery and operation of the Oracle database system. Unfortunately
redo logs are another structure that is difficult to tune before an application system goes
active. The mgority of tuning efforts with redo logs dedl with two important issues:

1. Minimizethe impact of the redo log/archive log/checkpoint processes on database
performance.
2. Maximize recoverability of the database

At times these two goals may be in opposition since by maximizing recoverability (by
reducing time to recovery for example) you will cause a performance impact. | am afraid
you will have to balance these two gods while deding with redo log tuning, however one
thing to remember isthat you will (hopefully) spend much more time dedling with an

operationa database than you will recovering a database so in the grester scheme of
things perhaps optimizing for performance is the mgor goad you should attempt to reach.

Redo Log Sizing

The Sze of aredo log depends on the transaction volume within your database.
Unfortunately there are no magic formulae to gpply that will give you asizevdue, it is
completely empiricaly derived. Oracle requires a least two groups with one redo log
member per group for Oracle to start. If you have archive logging enabled this should b
pushed to aminimum of three groups of one redo log member each. | prefer aminimum
of five groups of two mirrored members each for archive logging.

Redo logs should be sized so that should you loose the online redo log aminima amount
of dataislost. What isaminima amount of data? Y our guessis as good as mineis,
however you need to ask your users (or managers) how much data can they afford to
los=? The vadue they give you for datawill probably relate to atime interval such as“we
can lose an hours worth of data but no more”. If you are given atime interval then you
need to Sze the logs such that alog switch happens gpproximately at that interval during
norma usage.

Log switch information is contained in the various versions of the vélog hist or
v@log_higtory views. Log switch information is o contained in the dert log. Once you
etablish how much data you can afford to lose (based on atime interva) monitor your
views or dert log to find how often log switches are happening and adjust the Size up or
down to meet your requirement. Figure 32 shows a script to generate log switch statistics.

REM NAME ;1 og_hist.sql

REM PURPOCSE: Provi de info on logs for last 24 hour since last |log switch
REM USE : From SQLPLUS

REM Lim tations : None

REM

COLUMN t hr ead# FORMAT 999 HEADI NG ' Thr d#'

COLUWN sequence# FORMAT 99999 HEADI NG ' Seqg#'

COLUMWN first_change# HEADI NG ' Low#'

COLUMN next _change# HEADI NG ' Hi gh#'

COLUWN first_tine HEADI NG ' Accessed'

SET LI NES 80
@itle80 "Log History Report"
SPOOL rep_out\ &b\l og_hi st
REM
SELECT t hread#, sequence#,
first_change#, next _change#,
TO CHAR(a.first_tine, dd-nmon-yyyy hh24:m:ss') first_tinme
FROM
v$l og_history a
VWHERE
a.first_tinme >
(SELECT b.first_time-1
FROM v$l og_hi story b WHERE b. next _change# =
(SELECT MAX(c.next_change#) FROM v$l og_history c));
SPOOL OFF
SET LI NES 80
CLEAR COLUMNS
TTI TLE OFF
PAUSE Press enter to continue

Figure 32: Script to Generate redo Log Switch Information

_

The above script will provide log switch information, the output from the script is shown
in Figure 33.

Dat e: 04/02/99 Page: 1
Time: 09:58 AM Log Hi story Report SYSTEM
DVDB dat abase
Thr d# Seq# Low# Hi gh# Accessed
1 71 66879 66977 30-mar-1999 11:13:04
1 72 66977 67066 30-nmar-1999 11:13:28
1 73 67066 67160 30-mar-1999 11:13:43
1 74 67160 67229 30-mar-1999 11:13:53
1 75 67229 67303 30-mar-1999 11:14:02
1 248 104705 104716 30-mar-1999 16:04:57
1 249 104716 104723 30-mar-1999 16:13: 46
1 250 104723 105257 30-mar-1999 16:13:47
1 251 105257 105963 30-mar-1999 16: 28: 36

181 rows sel ected
Press enter to continue

Figure 33: Output From Redo Log Switch Script
Of course, without knowing the current Sze of the redo logs the above information does

uslittle good, the script in figure 34 will document the Size of your redo logs and the
location of their files

REM NAME: log_file.sq

REM FUNCTI ON: Report on Redo Logs Physical files
REM

COLUMN gr oup# FORMAT 999999

COLUMN nmenber FORMAT a40

COLUMN neg FORMAT 9, 999

REM

SET LI NES 80 PAGES 60 FEEDBACK OFF VERI FY OFF
START title80 'Redo Log Physical Files'
BREAK ON group#
SPOOL rep_out\&db\rdo_file
REM
SELECT
a. group#, a. nenber, b. byt es, b. byt es/ (1024*1024) meg
FROM
sys.v_$logfile a,
sys.v_$log b
VWHERE
a. group#=b. group#
ORDER BY
gr oup#;
SPOOL OFF
CLEAR COLUMNS
CLEAR BREAKS
TTI TLE OFF
SET PAGES 22 FEEDBACK ON VERI FY ON
PAUSE Press enter to continue

Figure 34: Redo Log Physical File Report

The output from the above script is shown in figure 35.

Dat e: 04/02/99 Page: 1
Tinme: 10:10 AM Redo Log Physical Files SYSTEM
DVDB dat abase

GROUP# MEMBER BYTES MEG
1 C:\ ORACLE1\ ORTEST1\ REDO\ LOGADNDB. ORA 1048576 1
2 D:\ ORACLE2\ ORTEST1\ REDO\ LOG3DMDB. ORA 1048576 1
3 E:\ ORACLES3\ ORTEST1\ REDO\ LOG2DMDB. ORA 1048576 1
4 F:\ ORACLE4\ ORTEST1\ REDO\ LOG1DMDB. ORA 1048576 1

Press enter to continue

Figure 35: Example Output of Redo Log File Report

Basad on our desire to maximize performance and meet recoverability guiddines (only
lose amaximum of an hours data) we need to increase the size of the above redo logs
since they are switching about every ten seconds.

Another item to adjust that dedls with redo logsisthe sze of the log buffer. The log

buffer iswritten to in a circular fashion and as the buffer fills (actudly at about athird

full) the LGWR process starts to write it out to the redo log. Too small alog buffer

setting and you will incur excessive 1O to the redo logs and work the LGWR to degth, too
large avaue and the writes are delayed. | usudly suggest no larger asizethan 1

megabyte for the log_buffer parameter and that the sze be either equad to or an equad
divisor of the actud redo log Sze. Unless you have very smal redo logs the default value
for log_buffers supplied by Oracleistoo small.

Tuning Rollback Segments

It isdifficult if not impossible to proactively tune rollback segments. The reason for this
difficulty in the tuning of rollback segmentsisthat they depend on the size of

transactions for thelr 9zing information and you usudly won't know the Size of a
transaction until the transaction is running on a production level syssem. However, once
transactions are running in a quas- production size environment the sizing of rollback
segments is made much easier. Theviews DBA_ROLLBACK_SEGS and
V$ROLLSTAT dong with V$ROLLNAME are used in an active environment to aid in
the 9zing estimations. The views shown in Figure 36 help parse the large amount of
information in these views into more manageable chunks.

REM
REM FUNCTI ON: create views required for rbkl and rbk2 reports.
REM
rem exit
CREATE OR REPLACE VI EWrol | backl AS
SELECT
d. segnment _nane, extent s,
opt si ze, shri nks,
aveshrink, aveacti ve,
d. status
FROM
v$rol | name n,
v$rol I stat s,
dba_rol | back_segs d
VWHERE
d. segment _i d=n. usn(+)
and d. segnment _id=s.usn(+);

CREATE OR REPLACE VI EWrol | back2 AS
SELECT
d. segnment _nane, extent s,

_

xact s, hwnsi ze, rssi ze,

wai t s, wr aps, ext ends

FROM

v$rol | name n,

v$rol |l stat s,

dba_rol | back_segs d

WHERE

d. segnment _i d=n. usn(+)

and d.segnment _id=s.usn(+);

Figure 36: Views to Parse out Rollback Data

Oncethe viewsin figure 36 are created, two smple reports give us the informeation to
derive a best guess estimate of rollback Szing parameters. These reports are shownin
figure 37.

REM NAME : RBK1. SQL

REM FUNCTI ON : REPORT ON ROLLBACK SEGMENT STORAGE

REM FUNCTI ON . USES THE ROLLBACK1l VI EW

REM USE : FROM SQLPLUS

REM Li m tations : None

REM

COLUMN hwnsi ze FORMAT 9999999999 HEADI NG ' LARGEST TRANS'
COLUMN t abl espace_nane FORMAT alO HEADI NG ' TABLESPACE'
COLUWN segnent _nane FORMVAT A10 HEADI NG ' ROLLBACK'
COLUMN optsi ze FORMAT 9999999999 HEADI NG ' OPTL| SI ZE'
COLUMN shri nks FORMAT 9999 HEADI NG ' SHRI NKS'
COLUWN aveshri nk FORMAT 9999999999 HEADI NG ' AVE| SHRI NK'
COLUWN aveactive FORMAT 9999999999 HEADI NG ' AVE| TRANS'
COLUMWMN wai t's FORMAT 99999 HEADI NG ' WAI TS'
COLUWMN wr aps FORMAT 99999 HEADI NG ' WRAPS'
COLUMN ext ends FORMAT 9999 HEADI NG ' EXTENDS'
rem

BREAK ON REPORT
COMPUTE AVG OF AVESHRI NK ON REPORT

COVPUTE AVG OF AVEACTI VE ON REPORT
COMPUTE AVG OF SHRI NKS ON REPORT
COMPUTE AVG OF WAI TS ON REPORT
COMPUTE AVG OF WRAPS ON REPORT
COVMPUTE AVG OF EXTENDS ON REPORT

COVPUTE AVG OF HWWVSI ZE ON REPORT

SET FEEDBACK OFF VERI FY OFF LI NES 132 PAGES 58
@itlel32 "ROLLBACK SEGMENT STORAGE"

SPOOL rep_out\ &b\ rbkl

rem

SELECT * FROM rol | backl ORDER BY segment _nane;
SPOOL OFF

CLEAR COLUMWNS

TTI TLE OFF

SET FEEDBACK ON VERI FY ON LI NES 80 PAGES 22
PAUSE Press enter to continue

TTI TLE OFF

SET FEEDBACK ON VERI FY ON LI NES 80 PAGES 22
PAUSE Press enter to continue

REM NAME : RBK2. SQL

REM FUNCTI ON : REPORT ON ROLLBACK SEGMENT STATI STI CS

REM FUNCTI ON . USES THE ROLLBACK2 VI EW

REM USE : FROM SQLPLUS

REM Li mi tations : None

REM

COLUMWN segnent _nane FORMAT Al0 HEADI NG ' ROLLBACK'
COLUMN extents FORMAT 9, 999 HEADI NG ' EXTENTS'
COLUWN xact s FORMAT 9, 999 HEADI NG ' TRANS'

COLUWMN hwnsi ze FORMAT 9, 999, 999, 999 HEADI NG ' LARGEST TRANS'

COLUMN rssi ze FORMAT 9, 999, 999, 999 HEADI NG ' CUR SI ZE'

Ko

COLUWN wai t's FORMAT 999 HEADI NG ' WAI TS'
COLUMN wr aps FORMAT 999 HEADI NG ' \RAPS'
COLUWN ext ends FORMAT 999 HEADI NG ' EXTENDS'
REM

SET FEEDBACK OFF VERI FY OFF Iines 80 pages 58
REM

@itle80 "ROLLBACK SEGMENT STATI STI CS"

SPOOL rep_out\ &b\ rbk2

REM

SELECT * FROM rol | back2 ORDER BY segnment _nane;
SPOOL OFF

SET LI NES 80 PAGES 20 FEEDBACK ON VERI FY ON
TTI TLE OFF

CLEAR COLUMNS

PAUSE Press enter to continue

Figure 37: Reports Using ROLLBACK1 and ROLLBACK2

The output from the reports in figure 37 will resemble those shown in figure 38.

Date: 12/07/98 Page: 1
Time: 03:38 PM Rol | back Segnment Report DBAUTI L
ORTEST1 dat abase
Tabl espace Rol | back Initial Next M nimum Maxi num Current Opt i mal
Omner Name Segnent Nane Extent Ext ent Extents Ext ents Extents Setting
PUBLI C PSRBS2 A09 10485760 10485760 2 121 2
Al0 10485760 10485760 2 121 2
SYS PSRBS2 A05 20480 20480 4 249 120 2457600
RO6 2097152 2097152 4 249 4 8388608
RO7 2097152 2097152 4 249 4 8388608
RO9 2097152 2097152 4 249 4 8388608
RBSBI G 104857600 52428800 4 120 4
R10 2097152 2097152 4 249 4 8388608
RO8 2097152 2097152 4 249 4 8388608
SYSTEM SYSTEM 53248 53248 2 249 4
Date: 12/08/98 Page: 1
Time: 05:15 PM ROLLBACK SEGMENT STATI STI CS DBAUTI L
ORTEST1 dat abase
ROLLBACK EXTENTS TRANS LARGEST TRANS CUR SI ZE WAI TS WWRAPS EXTENDS
A05 4 0 8,433, 664 8,433, 664 3 5 0
A09 7 0 73, 396, 224 73, 396, 224 4 5 0
Al0 3 0 31, 453, 184 31, 453, 184 1 3 0
RO6 4 0 33,746, 944 8,433, 664 8 34 23
RO7 4 0 65, 388, 544 8,433, 664 3 6 0
RO8 4 1 103, 358, 464 8,433, 664 0 3 0
RO9 4 0 21, 090, 304 8,433, 664 9 21 6
R10 4 0 23,199, 744 8,433, 664 2 17 7
RBSBI G 4 0 262, 139, 904 262, 139, 904 1 0 0
SYSTEM 4 0 241, 664 241, 664 0 0 0

Figure 38: Example Rollback Segment Report

Asyou can see from looking at the report the ORTEST ingtance rollback ssgmentsare a
bit of amess. We have both public (Owner PUBLIC) and private (Owner SY S) rollback
segments, segments that have extent sizes from 20k to 100 megabytes and amix of
segments with and without OPTIMAL set. The second report shows that there are

numerous waits, wraps and extends.

In szing rollback segments your goa should be to reduce waits, wraps and extends (and
thus ghrinks) to aminimum. The act of extending or shrinking cause recursive SQL

which is a performance robber as well as dynamic extenson which is another
performance robber. By properly szing rollback segments there should be no shrinks and
no waits.

| have found that Szing rollback segments such that the initia and next extents are Szed
for the average transaction and the optimal is st at the average of the largest transaction
waits and shrinks are reduced or diminated.

Unless you are using a shared server environment | do not suggest using public rollback
segments at dl. All rollback segments should be sized identicaly except for a specid
rollback segment used for large transactions (in this case RBSBIG). Notice how the large
rollback segment is mixed in with the smaller rollback segments, thisis not a good
practice. The large rollback segment should be placed in its own tablespace that has been
optimized for itsuse.

In many cases, large transactions such as batch loads, updates or deletes can be
"chunked" to reduce impact on rollback segments and thus prevent the frustration of
running out of extents, space, snapshot too old or dl three during alarge transaction.

Tuning Oracle Sorts

Sorts are done when Oracle performs operations that retrieve information and require the
information retrieved to be an ordered s, in other words, sorted. Sorts are done when the
following operations are performed:

- Index creation

- Group by or Order by statements

- Use of the digtinct operator

- Join operations

- Union, Intersect and Minus set operators.

Each of these operations requires a sort. There is one main indicator that your sorts are
going to disk and therefore your sort areain memory istoo smdl. Thisareais defined by
theinitiaization parameters SORT_AREA_SIZE and SORT_AREA_RETAINED_SIZE
in both ORACLE7 and ORACLES.

The primary indicator is the sorts (disk) statistic shown in Figure 15.42. If this parameter
exceeds 10% of the sum of sorts(memory) and sortg(disk) increase the
SORT_AREA_SIZE parameter. Large vaues for this parameter can induce paging and
swapping, S0 be careful you don't over dlocate. In ORACLE 7 thisareais dlocated
ether directly from memory to each user or, if the multi-threaded server isused (MTYS) a
section of the shared poal is alocated to each user. In ORACLES an extra shared area
cdled the LARGE POOL isused (if it has been initidized).

Under ORACLEY the SORT_AREA_SIZE parameter controls the maximum sort area.
The sort areawill be dynamicdly redlocated down to the size specified by the
initidization parameter SORT_AREA RETAINED SIZE.

In ORACLE?.2 and later the initidization parameters SORT_DIRECT _WRITES,
SORT_WRITE BUFFER_SIZE and SORT_WRITE_BUFFERS control how needed
disk sorts are optimized. By specifying SORT_DIRECT_WRITESto TRUE you an
improve your sort times by severd fold because this forces writes direct to disk rather

than using the buffers. The SORT_WRITE BUFFER _SIZE parameter should be set such
that SORT_WRITE_BUFFERS* SORT_WRITE_BUFFER_SIZE isaslarge asyou dare
have it be on your system and il not get swapping. The SORT_WRITE_BUFFERSisa
vauefrom 2 to 8 and the SORT_WRITE BUFFER _SIZE is set between 32 and 64k
bytes. Therefore the maximum size this can be will be 8*64k = 512k or half a megabyte.

Some additional sort parameters are SORT_READ_FAC and SORT_SPACEMAP_SIZE.
The SORT_READ_FAC parameter assists with sort merges. Set this to between 25-100%
of thevalue of the_DB_BLOCK_MULTIBLOCK_READ_COUNT parameter. The
SORT_SPACEMAP_SIZE parameter if set correctly helps with actions such asindex
builds. The suggested setting is:

((total sort bytes/(SORT_AREA_SIZE)) + 64

Where:
total sort bytes = (number of recordsin sort) * (average row length +
(2* No_of _columns))

However stting it higher temporarily isn't harmful and can speed the index build
gppreciably.

For standard sorts you should set the SORT_AREA_SIZE to the average sort size for
your database. The temporary tablespacesinitia and next default storage parameter
should be st to the vadlue of SORT_AREA_SIZE. For use with pardld query sortsa
temporary tablespace should be spread (striped) across as many disks as the degree of
pardldiam.

On versons that support temporary tablespace specification atemporary tablespace
should be used for the target for disk sorts. A temporary tablespace (one created or
dtered to be TEMPORARY in nature) has greetly reduced space management overhead
and thus can speed sorts. Another tip for the tablespaces used for sorting isthat it should
be striped over as many drives as possible to speed access to the sort sets.

Theinitidization parameter SORT_MULTIBLOCK_READ_COUNT does for sorts what
DB_MULTIBLOCK_READ_COUNT doesfor full table scans, it forces Oracle to read at
least that amount of data specified per merge read pass.

The views that are used to help in the sort tuning process are V$SORT _SEGMENT and
V$SORT_USAGE. These views are not populated unless dosk sorts occur. The

V$SORT_SEGMENT view contains asingle line for each sort operation thet gives
detailed information about segment size in blocks. If you are getting excessive disk sorts
you should query this view to cdculate the best possible sort area size. An example query
to give average sort area Size is shown in Figure 39.

REM
REM FUNCTI ON: Generate a summary of Di sk Sort Area Usage
REM
REM di sksort. sql
REM
COLUMWMN val ue NEW VALUE bs NOPRI NT
SELECT val ue FROM v$paraneter WHERE nane='db bl ock size';
START title80 "lInstance Di sk Area Average Sizes"
SPOOL rep_out\ &&db\ di sk_sort
SELECT
Tabl espace_nane,
COUNT(*) areas,
(SUM total bl ocks)/COUNT(*))*&&bs avg_sort _bytes
FROM v$sort _segnent
GROUP BY t abl espace_nane;
SPOOL OFF

Figure 39: Example Report On Disk Sort Sizes

Optimizer Modes
Essentiadly there are two optimizer modes: RULE or CHOOSE. CHOOSE must be used
if:

HINTS used

Mode set to FIRST_ROWS or ALL_ROWS

New features are to be used

However, CHOOSE has its drawbacks:
Must use frequent ANALY ZE
Must Use histograms with skewed data

Tuning the Multi-part Oracle8 Buffer Cache

In Oracle8 and Oracle8i the database block buffer has been split into three possible aress,
the default, keep and recycle buffer pool aress. It is not required that these three pools be
used, only one, the default pool configured with the DB BLOCK _BUFFERS
initidization parameter must be present, the others are “sub” pool to this main pool. How
are the various pools used?

If atable, index or cluster is created with specifying that the KEEP or RECY CLE pool be
used for its data, then it is placed in the default pool when it is accessed. Thisis standard
Oracle7 behavior and if no specid action is taken to use the other poolsthen thisisaso
standard Oracle8 and OracleBl behavior. Theinitidization parameters

DB_BLOCK_BUFFERS and DB_BLOCK_LRU_LATCHES must be st if multiple
pools are to be used:

DB_BLOCK_BUFFERS = 2000
DB _BLOCK_LRU_LATCHES= 10

The KEEP database buffer pool is configured usng the BUFFER_POOL_KEEP
initidization parameter which looks like so:

BUFFER_POOL_KEEP = ‘100, 2’

The two specified parameters are the number of buffers from the default pool to assign to
the keep pool and the number of LRU (least recently used) latches to assgn to the keep
pool. The minimum number of buffers assigned to the pooal is 50 times the number of
assigned latches. The keep pool, asits name implies, is used to store object data that
shouldn’t be aged out of the buffer pool such aslook up information and specific
performance enhancing indexes. The objects are assigned to the keep pool through either
their creation statement or by specificaly assgning them to the pool using the ALTER
command. Any blocks dready in the default pool are not affected by the ALTER
command, only subsequently accessed blocks.

The keep pool should be sized such that it can hold al the blocks from dl of the tables
created with the buffer pool set to KEEP.

The RECY CLE database buffer poal is configured using the
BUFFER_POOL_RECY CLE initidization parameter which looks like so:

BUFFER_POOL_RECYCLE = ‘1000, 5’

The two specified parameters are the number of buffers from the default pool to assign to
the recycle pool and the number of LRU (least recently used) latches to assign to the keep
pool. The minimum number of buffers assigned to the poal is 50 times the number of
assigned latches. The recycle poal, asits name implies, is used to Sore object data that
should be aged out of the buffer pool rapidly such as searchable LOB information. The
objects are assigned to the recycle pool through either their creetion statement or by
gpecificaly assgning them to the pool using the ALTER command. Any blocks aready

in the default pool are not affected by the ALTER command, only subsequently accessed
blocks.

Aslong as the recycle pool shows low block contention it is sized correctly.

With the above setpoints for the default, keep and recycle pools the default pool would
end up with 900 buffers and 3 Iru latches.

Since the classc method of tuning the shared pool is not available in Oracle8i we must
examine new methods to achieve the same ends. Thisinvolves looking a what Oracle

has provided for tuning the new pools. A new script, catperf.sgl offers severd new views
for tuning the Oracle buffer pools. These views are;

V$BUFFER_POOL -- Provides gtatic information on pool
configuration
V$BUFFER_POOL_STATISTICS -- Provides Pool related statistics
V$DBWR WRITE HISTOGRAM -- Provides summary information on
DBWR write

activities
V$DBWR WRITE _LOG -- Provides write information for each
buffer area.

Of the four new viewsthe V$BUFFER _POOL_STATISTICS view seems the most
useful for tuning the buffer pool. The V$BUFFER_POOL_STATISTICS view contains
datigtics such asbuffer _busy waits, free_buffer_inspected, dirty _buffers inspected
and physical write related data.

If abuffer pool shows excessive numbers of dirty buffers ingpected and high amounts of
buffer_busy waitsthen it probably needsto beincreased in Sze.

When configuring LRU latches and DBWR processes remember that the laiches are
assigned to the pools sequentidly and to the DBRW processes round robin. The number
of LRU processes should be equa to or amultiple of the value of DBWR processes to
ensure that the DBRW load is balanced across the processes.

Adding Resources

If dl possible tuning has been accomplished then add resources. Resource are either
memory, additional CPUs or more disks. However, you should andyze the system to see
what will give you the grestest return on investment. If you aren’t seeing memory
contention then it makes no sense to add memory. If you aren’t CPU bound adding CPUs
probably won't help (unlessyou are going to pardld query or multiple DBWR

processes.) Likewiseif you aren’'t seeing disk contention then additiond disks probably
won't buy you much. However, if you are seeing redo log contention or 10 contention

due to having to share disks between multiple files, then performance gains may be
redlized by spreading the offending files across multiple disk arrays even if the existing
disksaren't 10 bound.

All things consdered, memory will give the mogt tuning benefit. On the average memory
is 14,000 times fagter than disk. Anytime an operation can be moved into memory
performance will be improved. Proper caching of indexes and tables, proper sort area
Szing and proper Szing of cache and pool areas are critical to proper performance.

It has been said that parallel query is the often sought “make database faster”

initidization parameter, but only for aproperly designed set of tables and indexes.
Multiple CPUswill help if you use pardle query snce having pardld threads running

againg insufficient CPUs will make problems worse. Pardlldl query and multiple

processes (DBWR, LGWR, etc) not much help with single CPU system.

Use proper striping (RAID1/0 isusualy best performer, RAID5 most dependable) when
laying out your tables and indexes. Also consder partitioning and in Oracle8i
subpartitioning. Table 3 shows the various RAID levels and whét files should be placed

on them.
RAID | Typeof Contral File Database File | Redo Log File | ArchiveLog
Raid File
0 Striping Avoid OK Avoid Avoid
1 Shadowing | Recommended | OK Recommended | Recommended
0+1 Striping OK Recommended | Avoid Avod
and
Shadowing
3 Striping OK OK Avoid Avoid
with dtetic
parity
5 Striping OK Recommended | Avoid Avod
with if RAIDO-1
rotating not available
parity

Table 3: RAID Recommendations (From Metalink NOTE:45635.1)

Tuning Tables and Indexes

The biggest thing you can do to tune tables is to ensure that tables are properly sized and
spread on the disk array. In recent articles the concept of using fixed extent szesfor dl
objectsin a gpecific tablespace has been discussed. Thisis an excellent concept for
reducing fragmentation problems when used properly. Y ou must till perform szing on
the tables to be sure that you place the table in the proper szing modd. With modern disk
arrays and use of RAID, many of the old table structure rules no longer apply, however,
even on RAID Oracle blocks are Oracle blocks. Therefore it is till wise to place the

fixed length, fixed Sze, or fixed value columns first and place the variable sze or

updated columns last in the table order when the table is built. This alows optima use of
the PCTFREE area.

Just like tables, indexes need to be properly sized, ordered and spread on disk array.
Indexes like large block sizes since this alows more optima use of available block space.
The order of columnsin an index should match the order of columnsin the query
WHERE dause. Unless the leading column in the index maiches the leading column in
the where clause an index may not be used. In Oracle8i with query rewrite you can get

away with miss-ordered columns but it is not suggested unless done to reduce the indexes
clustering factor.

Tables should be rebuilt for the following reasons:
- Excessve numbers of extents
Excessve amounts of row chaining
To patition the table
To move the table to a different tablespace

Even though many suggest that multiple extents aren’'t harmful to atable or index, if you
get excessive extents it makes doing table and index maintenance more difficult dueto
the excessive cdlsto FET$ and UETS tables.

Row chaining occurs when an update forces arow to grow beyond the available free
gpace |eft in the block for updates. Row chaining resultsin doubling of your 10 to
retrieve specific vaues.

Unlessatableis created as a partitioned table from the start you cannot add partitions or
make it partitioned later without rebuilding the table entirdly.

The REBUILD command can aso be used to move atable from one tablespace to
another.

Indexes should be rebuilt when:

Index has too many levels

Index is too broad

Index clugtering factor too high
A Balanced tree is defined as atree structure in which any path from the root page to any
leaf page will traverse the same number of levels. Figure 40 shows the basic structure of
aB*Treeindex.

Root-fndex Block

Intarmeadiate-fndex Blodks

MNext leaf pointers

Data block

E =rowid pointer

Figure 40: Basic B* Tree Structure

When the number of levels gets too deep or the width of the find level gets too broad the
performance of the index degrades. This dso goes hand-in-hand with a poor clustering
factor.

The index clustering factor (CF) determines the price of accessing data via the rowids
retrieved from the index. The CF tells you how many data blocks are read in afull index
scan. Y ou can determine the actua number of data blocks read by multiplying the CF by
the percentage of data to be readThe CF can range between the number of blocks
containing data to the number of rowsin the tableA high clustering factor can either be
implicit in the index design, in which case there is nothing you can do other than reorder
the index columns, or it can be caused by an index that has been frequently updated
causing block splits. Figures 41 and 42 show indexs with good and bad clustering factors.

.=
Root block
/

| I

R [
AN AN S
L]

[] L] Data
L L] [] [] blocks

Figure 41: Index with Good (low) Clustering Factor

Root block

el .
/v N L v /]

Leaf
WG blocks
A
[] [] L] []
[] (]]] Data
[] [] [] u blocks

Figure 42: Index with a Bad (high) Clustering Factor

In Oracle 8i thetotal cost of the index is adjusted using the following formula

Adjusted Cost = Cost * OPTIMIZER_INDEX_COST_ADJ /100
This adjustment bypasses the Oracle assumption of alow buffer hit ratio used in the data
access caculation. In order to ensure that this adjustment is the proper thing to do make
sure there is adequate memory alocated to Oracle and that the index is cached.
If you assume that most of the data will be placed in the buffer cache and remain there,
you can set OPTIMIZER_INDEX_COST_ADJ to avdue less than 100, reflecting the
percentage of time datawill be found in the buffer.

If you set the OPTIMIZER _INDEX_COST_ADJ to 10, the price of accessing any
index is 10% of the previoudy caculated price, presuming that datawill be found in the
buffer cache 90% of the time on average.

However, you must be very careful. It is very tempting to explicitly set alow vaue for
OPTIMIZER INDEX_COST_ADJand forceindex usage in dl casesyou must be sure
that your buffer cache can support dataremaining in the buffer so that the assumption
will be correct. Y ou must o be sure that the buffer cache remainsin memory and is not
paged out (i.e., make sure you have adequate physical memory!)

Bitmapped Index Usage*

A bitmapped index is used for low-cardinality data such as sex, race, hair color, and o
on. If acolumn to be indexed has a selectivity of greater than 30 to 40% of the total data
then it is probably a good candidate for bitmap indexing.

Bitmap indexing is not suggested for high-cardindity, high-update, or high-delete-type
data asin these type Stuations bitmap indexes may have to be frequently rebuilt.

There are three things to consider when choosing an index method:

Performance
Storage
Maintainability

The mgor advantages for using bitmapped indexes are: performance impact for certain
gueries, and their rdlaively smal storage requirements. Note, however, that bitmapped
indexes are not applicable to every query and bitmapped indexes, like B-tree indexes, can
impact the performance of insert, update, and del ete statements.

Bitmapped indexes can provide very impressive performance improvements. Under test
conditions the execution times of certain queriesimproved by severd orders of
magnitude. The queries that benefit the most from bitmapped indexes have the following
characteridtics.

The WHERE- clause contains multiple predicates on low-cardindity columns.

The individua predicates on these low-cardindity columns sdlect alarge number
of rows.

Bitmapped indexes have been created on some or dl of these low-cardindity
columns.

The tables being queried contain many rows.

An advantage of bitmapped indexes is that multiple bitmapped indexes can be used to
evauate the conditions on asingle table. Thus, bitmapped indexes are very useful for
complex ad hoc queries that contain lengthy WHERE-dauses involving low cardindity
data

Bitmapped indexes incur asmal storage cost and have a significant storage savings over
B-tree indexes. A bitmapped index can require 100 times less space than a B-treeindex
for alow-cardindity column.

Remember that a strict comparison of the relative szes of B-tree and bitmapped indexes
is not an accurate measure for selecting bitmapped over B-tree indexes. Because of the
performance characterigtics of bitmapped indexes and B-tree indexes, you should
continue to maintain B-tree indexes on your high-cardindity data. Bitmapped indexes
should be considered primarily for your low-cardinaity data.

The storage savings are S0 large because bitmapped indexes replace multiple-column B-
tree indexes. In addition, single bit vaues replace possibly long columnar type data.

When using only B-tree indexes, you must anticipate the columns that will commonly be
accessed together in asingle query and then create a multicolumn B-tree index on those
columns. Not only does this B-tree index require alarge amount of space, but it will aso
be ordered; that is, a B-treeindex on (MARITAL_STATUS, RACE, SEX) isusdessfor
aquery that only accesses RACE and SEX. To completely index the database, you are
forced to create indexes on the other permutations of these columns. In addition to an
index on (MARITAL_STATUS, RACE, SEX), there is aneed for indexes on (RACE,
SEX, MARITAL_STATUYS), (SEX, MARITAL_STATUS, RACE), etc. For thesmple
case of three low-cardindity columns, there are Six possible concatenated B-tree indexes.
What this means isthat you are forced to decide between disk space and performance
when determining which multiple-column B-tree indexes to create.

With bitmapped indexes, the problems associated with multiple-column B-tree indexesis
solved because bitmapped indexes can be efficiently combined during query execution.
Three amdl single-column bitmapped indexes are a sufficient functiona replacement for
gx three-column B-tree indexes. Note that while the bitmapped indexes may not be quite
as efficient during execution as the appropriate concatenated B-tree indexes, the space
savings provided by bitmapped indexes can often more than judtify their utilization.

The net storage savings will depend upon a database' s current usage of B-tree indexes:

A database that rdlies on single-column B-tree indexes on high-cardindity
columnswill not observe sgnificant gpace savings (but should see Sgnificant
performance increases).

A database containing a sgnificant number of concatenated B-tree indexes could
reduce its index storage usage by 50% or more, while maintaining smilar
performance characteristics.

A database that lacks concatenated B-tree indexes because of storage constraints
will be able to use bitmapped indexes and increase performance with minimal
storage cogts.

Bitmapped indexes are best for read-only or light OL TP environments. Because thereis
no effective method for locking asingle bit, row-leve locking is not avalladle for
bitmapped indexes. Instead, locking for bitmapped indexes is effectively & the block
level which can impact heavy OLTP environments. Note also that like other types of
indexes, updating bitmapped indexes is a costly operation.

Although bitmapped indexes are not appropriate for databases with a heavy load of insert,
update, and delete operations, their effectiveness in a data warehousing environment is
not diminished. In such environments, datais usudly maintained via bulk inserts and
updates. For these bulk operations, rebuilding or refreshing the bitmapped indexesis an
efficient operation. The storage savings and performance gains provided by bitmapped
indexes can provide tremendous benefits to data warehouse users.

In preliminary testing of bitmapped indexes, certain queries ran up to 100 times faster.
The bitmapped indexes on low-cardindity columns were aso about ten times smdler
than B-tree indexes on the same columns. In these tegts, the queries containing multiple
predicates on low-cardinality data experienced the most sgnificant speedups. Queries
that did not conform to this characteristic were not assisted by bitmapped indexes.
Bitmapped composite indexes cannot exceed 30 columns.

The Initidization parameters of concern when dedling with bitmap indexes are;

CREATE_BITMAP_AREA_SIZE -- Determines the amount of memory
dlocated for bitmap creetion. Default is8MB. If cardindity is smdl, thisvaue
can be reduced sgnificantly.

BITMAP_MERGE_AREA_SIZE -- Amount of memory to use for merging
bitmap grings. Default vaue is IMB. Larger value can improve performance
snce the bitmap segments must be pre-sorted before being merged into asingle
bitmap.

Some perfromance characteristics for bitmap indexes are:
Larger block sizes can improve the storing and retrieving of bitmap informetion. This
means more efficient and thus faster operations involving bitmaps.

To compress storage further, use the NOT NULL constraint on bitmap index columns.
Thisis because nulls do exist in bitmap indexes, therefore they can be used to support 1S
NULL and ISNOT NULL conditions.

Another consderation with bitmap indexes is that an ALTER TABLE command that
modifies a bitmap index column may invalidate the index structure.

Thefind thing you should remember about bitmap indexes is thet they are not considered
by the RBO. In order to use bitmap indexes you must use cost based (CBO) optimization.

Function Based Indexes

New to oracle8i isthe concept of afunction based index. In previous releases of Oracleif
we wanted to have a column thet was away's searched uppercase (for example alast
name that could have mixed case like McClelum) we had to place the returned vaue
with its mixed case letters in one column and add a second column that was upper-cased
to index and use in searches. This doubling of columns required for this type of searching
lead to doubling of sze requirements for some application fields. The cases where more
complex such as SOUNDEX and other functions would aso have required use of a
second column. Thisis not the case with Oracle8i, now functions and user-defined
functions as well as methods can be used in indexes. Let'slook at asmple example using
the UPPER function.

CREATE | NDEX tel e_dba. upl_clientsv8l

ON tel e_dba. clientsv81(UPPER(cust oner nane))
TABLESPACE t el e_i ndex

STORAGE (I NI TIAL 1M NEXT 1M PCTI NCREASE 0) ;

In many applications a column may store a numeric vaue that trandates to aminimal set

of text values, for example a user code that designates functions such as 'Manager',

'Clerk’, or 'General User'. In previous versions of Oracle you would have had to perform a
join between alookup table and the main table to search for dl 'Manager' records. With
function indexes the DECODE function can be used to diminate this type of join.

CREATE | NDEX tel e_dba. dec_clientsv81

ON tel e dba. clientsv81(DECODE(user code,

1, MANAGER , 2, ' CLERK' , 3, ' GENERAL USER))
TABLESPACE t el e_i ndex

STORAGE (I NI TI AL 1M NEXT 1M PCTI NCREASE 0) ;

A query againg the clientsv8i table that would use the above index would ook like:

SELECT custoner_name FROM tel e_dba. cli ent sv8i
WHERE DECODE(user _code,
1, MANAGER , 2, ' CLERK' , 3, ' GENERAL USER) =" MANAGER ;

The explain plan for the above query shows that the index will be used to execute the
query:

SQL> SET AUTOTRACE ON EXPLAI N
SQL> SELECT custoner_nanme FROM tel e_dba. client sv8i
2 VWHERE DECODE(user _code,
3* 1, MANAGER , 2,' CLERK' , 3,' GENERAL USER) = ' MANAGER

no rows sel ected

Execution Pl an

SELECT STATEMENT Opti m zer =CHOOSE (Cost =1 Card=1 Byt es=526)

TABLE ACCESS (BY | NDEX RON D) OF ' CLI ENTSV8I ' (Cost =1 Card=1 Byt es=526)
| NDEX (RANGE SCAN) OF ' DEC CLI ENTSV8I' (NON-UNI QUE) (Cost=1 Card=1)

N~ O
= O

The table using function based indexes must be andyzed, the intidization parameter
ENABLE QUERY_REWRITE st to true, and the optimizer mode set to CHOOSE or
the function based indexes will not be used. The RULE based optimizer cannot use
function based indexes.

If the function based index is built usng a user defined function, any ateration or
invaidation of the user function will invaidate the index. Any user built functions must
not contain aggregate functions and must be determinigtic in nature. A deterministic
function is one that is built usng the DETERMINISTIC key word in the CREATE
FUNCTION, CREATE PACKAGE or CREATE TY PE commands. A deterministic
function is defined as one that dways returns the same set vaue given the same input no
matter where the function is executed from within your gpplication.

Asof 8.1.5 the vdidity of the DETERMINISTIC key word usageis not verified and it is
left up to the programmer to ensure it is used properly. A function based index cannot be
created on aLOB, REF or nested table column or against an object type that contains a
LOB, REF or nested table. Let'slook at an example of a user defined type (UDT)
method.

CREATE TYPE roomt AS OBJECT(

I ngt h NUMBER,

wi dt h NUMBER,

MEMBER FUNCTI ON SQUARE FOOT

RETURN NUMBER DETERM NI STI C) ;

/

CREATE TYPE BODY roomt AS
MEMBER FUNCTI ON SQUARE FOOT
RETURN NUMBER | S
area NUMBER;

BEG N
AREA: =I ngt h*wi dt h;
RETURN ar ea
END;

END;

CREATE TABLE roonms OF roomt
TABLESPACE test _data
STORAGE (I NI TI AL 100K NEXT 100K PCTI NCREASE 0);

CREATE | NDEX area_idx ON roons r (r.square_foot());

Note: the above exampleis based on the examples given in the oracle manuds, when
tested on 8.1.3 the DETERMINISTIC keyword caused an error, dropping the
DETERMINISTIC keyword allowed the type to be created , however, the attempted
index cregtion failed on the dias specification. In 8.1.3 the key word is REPEATABLE
instead of DETERMINISTIC, however, even when specified with the REPEATABLE
keyword the attempt to cregte the index failed on the dias.

A function based index is dlowed to be either anorma B*tree index or it can dso be
mapped into a bitmapped format.

Reverse Key Indexes

New in oracle8 are reversed key indexes. A reversed key index prevents unbalancing of
the b*-tree and the resulting hot blocking which will happen if the b* -tree becomes
unbalanced. Generdly, unbalanced b*trees are caused by high volume insart activity ina
pardle server where the key vaue is only dowly changing such as with an integer
generated from a sequence or a datavaue. A reverse key index works by reversng the
order of the bytesin the key value, of course the ROWID vaueis not dtered, just the key
vaue. The only way to cregte areverse key index isto use the CREATE INDEX
command, an index that is not reverse key cannot be dtered or rebuilt into areverse key
index, however, areverse key index can be rebuilt to be anorma index.

One of the mgor limitations of reverse key indexes are that they cannot be used in an
index range scan Since reversing the index key vaue randomly distributes the blocks
across the index leaf nodes. A reverse key index can only use the fetch-by-key or full-
index(table)scans methods of access. Let'slook at an example.

CREATE | NDEX rpk_po ON tel e _dba. po(po_nun) REVERSE
TABLESPACE t el e_i ndex
STORAGE (I NI TI AL 1M NEXT 1M PCTI NCREASE 0) ;

The above index would reverse the vaues for the po_num column is it creetes the index.
This would assure random distribution of the vaues across the index |eaf-nodes. But
what if we then determine that the benefits of the reverse key do not out weigh the draw
backs? We can use the ALTER command to rebuild the index as a noreverse index:

ALTER | NDEX rpk_po REBUI LD NOREVERSE;
ALTER | NDEX rpk_po RENAME TO pk_po;

While the manuds only discuss the benefits of the reverse key index in the realm of
Oracle Pardld Server, if you experience performance problems after abulk |oad of data,
dropping and recreating the indexes involved as reverse key indexes may help if the table
will continue to be loaded in a bulk fashion.

Index Organized Tables

Index organized tables have been around since OracleB.0. If neither the HASH or INDEX
ORGANIZED options are used with the create table command then atable is created asa
gtandard hash table. If the INDEX ORGANIZED option is specified, the table is created
as a B-tree organized table identicd to a standard Oracle index created on Smilar
columns. Index organized tables do not have rowids.

Index organized tables have the option of alowing overflow storage of values that exceed
optimal index row size aswell as allowing compression to be used to reduce storage
requirements. Overflow parameters can include columnsto overflow aswdll asthe
percent threshold value to begin overflow. An index organized table must have a primary
key. Index organized tables are best suited for use with queries based on primary key
vaues. Index organized tables can be partitioned in Oracle8i aslong asthey do not
contain LOB or nested table types. The pcthreshold value specifies the amount of space
reserved in an index block for row data, if the row datalength exceeds this vaue then the
row(s) are stored in the area specified by the OVERFLOW clause. If no overflow clause
is specified rows that are too long are rejected. The INCLUDING COLUMN clause
alows you to specify at which column to break the record if an overflow occurs. For
example

CREATE TABLE test8
(doc_code CHAR(5),
doc_type | NTEGER,
doc_desc VARCHAR(512),
CONSTRAI NT pk_doci ndex PRI MARY KEY
(doc_code, doc_type))
ORGANI ZATI ON | NDEX TABLESPACE data_tbs1
PCTTHRESHOLD 20 | NCLUDI NG doc_type
OVERFLOW TABLESPACE dat a_t bs2
/

In the above example the |OT test8 has three columns, the first two of which make up the
key vaue. Thethird columnin test8 isadescription column containing variable length

text. The PCTHRESHOLD is st a 20 and if the threshold is reached the overflow goes
into an overflow storage in the data_tbs2 tablespace with any values of doc_desc that
won't fit in theindex block. Note that you will the best performance from IOTs when the
complete valueis stored in the IOT gructure, otherwise you end up with an index and
table lookup as you would with a standard index-table setup.

Partitioned Tables and Indexes

In Oracle8 we have true table and index partitioning where the sysem maintains range
partitioning, maintains indexes and al operations are supported againg the partitioned
tables. Partitions are good because:

Each partition istreated logically asits own object. It can be dropped, split or taken
offine without affecting other partitions in the same object.

Rows indde partitions can be managed separatdly from rowsin other partitionsin the
same object. Thisis supported by the extended partition syntax.

Maintenance can be performed on individua partitionsin an object, thisisal known
as partition independence.

Storage vaues (initid, next, ext) can be different between individua partitions or can
be inherited.

Partitions can be loaded without affecting other partitions.

A partitioned table in Oracle8 is range partitioned, for example on month, day, year or
some other integer or numeric vaue. This makes partitioning of tablesided for the time-
based data that is the main-stay of data warehousing.

S0 an accounts payabl e table would become:

CREATE TABLE acct _pay_99 (acct_no NUMBER, acct_bill _ant NUMBER
bil | _date DATE, paid_date DATE, penalty_anmount NUMBER, chk_nunber
NUVBER)

STORAGE (I NI TI AL 40K NEXT 40K PCTI NCREASE 0)

PARTI TI ON BY RANGE (pai d_date)

(

PARTI TI ON acct _pay_j an99
VALUES LESS THAN (TO DATE(' 01-feb-1999',' DD- npn- YYYY'))
TABLESPACE acct _payl,

PARTI TI ON acct _pay_feb99
VALUES LESS THAN (TO _DATE(' 01-mar-1999',' DD non- YYYY'))
TABLESPACE acct _payl,

PARTI TI ON acct _pay_nar 99
VALUES LESS THAN (TO _DATE(' 01-apr-1999',' DD non- YYYY'))
TABLESPACE acct _payl,

PARTI TI ON acct _pay_apr 99
VALUES LESS THAN (TO _DATE(' 01- may-1999',' DD- npn- YYYY'))
TABLESPACE acct _payl,

PARTI TI ON acct _pay_may99
VALUES LESS THAN (TO _DATE(' 01-jun-1999',' DD non- YYYY'))
TABLESPACE acct _payl,

PARTI TI ON acct _pay_j un99
VALUES LESS THAN (TO _DATE(' 01-jul -1999',' DD non- YYYY'))
TABLESPACE acct _payl,

PARTI TI ON acct _pay_j ul 99
VALUES LESS THAN (TO _DATE(' 01-aug-1999',' DD- npn- YYYY'))

TABLESPACE acct _payl,

PARTI TI ON acct _pay_aug99
VALUES LESS THAN (TO _DATE(' 01-sep-1999',' DD non- YYYY'))
TABLESPACE acct _payl,

PARTI TI ON acct _pay_sep99
VALUES LESS THAN (TO DATE(' 01-oct-1999',' DD- non- YYYY'))
TABLESPACE acct _payl,

PARTI TI ON acct _pay_oct 99
VALUES LESS THAN (TO _DATE(' 01-nov-1999',' DD non- YYYY'))
TABLESPACE acct _payl,

PARTI TI ON acct _pay_nov99
VALUES LESS THAN (TO DATE(' 01-dec-1999',' DD non- YYYY'))
TABLESPACE acct _payll,

PARTI TI ON acct _pay_dec99
VALUES LESS THAN (TO DATE(' 01-j an-2000',"' DD- nmon- YYYY'))
TABLESPACE acct _payl2,

PARTI TI ON acct _pay_2000
VALUES LESS THAN (MAXVALUE))
TABLESPACE acct _pay_nmax

/

The above command resultsin a partitioned table that can be treaeted as a single table for
al inserts, updates and deletes or, if desired, the individua partitions can be addressed. In
addition the indexes created will be by default loca indexes that are automatically
partitioned the same way as the base table. Be sure to specify tablespaces for the index
partitions or they will be placed with the table partitions.

In the example the paid_date is the partition key which can have up to 16 columns
included. Deciding the partition key can be the most vita aspect of creeting a successful
partitioned table. | suggest using the UTLSIDX.SQL script series to determine the best
combination of key values. The UTLSIDX.SQL script seriesis documented in the script
headersfor UTLSIDX.SQL, UTLOIDXS.SQL and UTLDIDXS.SQL script SQL files.
Essentidly you want to determine how many key vaues or concatenated key vauesthere
will be and how many rows will correspond to each key vaue set. In many casesit will
be important to balance rows in each partition so that 10 is balanced. However in other
cases you may want hard separation based on the data ranges and you don't redly care
about the number of records in each partition, this needs to be determined on a
warehouse-by-warehouse basis.

An index can be range partitioned unless:

It isacluster index

It is defined on a clustered table
Oracle supports three types of partitioned indexes.

- Locd Prefixed

Local Non-Prefixed

Globd Prefixed
A local index is defined as an index that is equi-partitioned with the underlying base
table, i.e, dl keysin agiven index partition refer only to rows stored in the single related

table partition_ocal index partitions are automaticaly maintained as table partitions are
inserted, dropped or split

A globd partitioned index is defined as an index in which the keysin a given index
partition may refer to rowsin more than one underlying table partition. Generdly not
equii- partitioned with the tableGloba partitioned indexes offer better performance via
index partition “pruning” In Oracle, globd indexes must be prefixed

A partitioned index issaid to be local prefixed if it is partitioned based on the vaue of the
left-most column(s) inthe key. A partitioned index is said to be local non-prefixed if itis
partitioned based on the vaue of any column(s) other than the left-mogt index column(s).
A partitioned index is said to be global prefixed if it is partitioned based on the vaue of
the left-most column(s) in the key, which differs from the table partition key

Globd indexes can offer performance benefits as aresult of partition pruning but they

can potentidly reduce availability by preventing partition-level maintenance operations.
Conversdly, local indexes improve maintainability and availability but can be more /O
intensve to scan.

Parallel Query

Pardld query wasfirg offered in Oracle verson 7. However, in Oracle 7 the
implementation was rather weak and sometimes generated questionable results. Pardld
Query in Oracle8 and 8i is more stable and offers a great performance boost to specific

types of SQL activities.

Pardld query splits the query into multiple segments and then assigns a sesgment of the
guery or operation to each available pardld query dave based on the settings for degree
of pardld. Thisdlowsfor maxima usage of multiple CPUs.

Parallel query works best if table and indexes are partitioned. The value for degree of
pardld isset at database, table or index level. There are numerous tuning options
avalablefor pardle query in 8 and 8i dlowing avery fine degree of control.

To use pardle anything in Oracle8 the pardld server parameters must be set properly in
the initidization file, these parameters are:

COMPATIBLE Set thisto at least 8.0

CPU_COUNT this should be set to the number of CPUs on your server, if it isnt set
it manudly.

DML_LOCKS set to 200 as a gart for apardld sysem.
ENQUEUE_RESOURCES set thisto DML_L OCKS+20

OPTIMIZER _PERCENT_PARALLEL thisdefaultsto O favoring serid plans, set to
100 to force all possible parallel operations or somewhere in between to be on the
fence.

PARALLEL_MIN_SERVERS s to the minimum number of pardld server davesto
start up.

PARALLEL_MAX_SERVERS st to the maximum number of paralel davesto
gart, twice the number of CPUs times the number of concurrent usersis a good
beginning.

SHARED_POOL_SIZE st to &t least

((3*mggbuffer_size)* (CPUs*2)* PARALLEL_MAX_SERVERYS) bytes + 40
megabytes

ALWAYS ANTI_JOIN Set thisto HASH or NOT IN operations will be serid.
SORT_DIRECT _WRITES Set thisto AUTO

DML, data manipulation language, what we know as INSERT, UPDATE and DELETE
aswell as SELECT can use pardld processing, the list of pardld operations supported in
Oracle8is

Table scan

NOT IN processing

GROUPBY processing

SELECT DISTINCT

AGGREGATION

ORDER BY

CREATE TABLE x ASSELECT FROM y;
INDEX maintenance

INSERT INTO X ... SELECT ... FROM y
Enabling congraints (index builds)

Star transformation

In some of the above operations the table has to be partitioned to take full advantage of
the parallel cgpability. In some releases of Oracle8 you have to explicitly turn onparald
DML using the ALTER SESSION command:

ALTER SESSI ON ENABLE PARALLEL DM.;

Remember that the COMPATIBLE parameter must be set to at least 8.0.0 to get parale
DML. Also, parale anything doesn't make senseif al you haveis one CPU. Make sure
that your CPU_COUNT variable is set correctly, this should be automatic but problems
have been reported on some platforms.

OracleB supports pardld inserts, updates, and deletes into partitioned tables. It dso
supports pardle insertsinto nonpartitioned tables. The paralel insert operation on a
non-partitioned table is smilar to the direct path load operation that is available in
Oracler. It improves performance by formatting and writing disk blocks directly into the
datafiles, bypassing the buffer cache and space management bottlenecks. In this case,
each pardld insert process insarts data into a ssgment above the high watermark of the
table. After the transaction commits, the high watermark is moved beyond the new
segments.

To use pardld DML, it must be enabled prior to execution of the insert, update, or delete
operation. Normdly, pardlel DML operations are done in batch programs or within an
gpplication that executes abulk insert, update, or delete. New hints are available to

gpecify the pardlelism of DML statements.

| suggest using explain plan and tkprof to verify that operations you suspect are pardl€
are actudly parald. If you find for some reason Oracle isn't doing paralel processing for
an operaiton which you fed should be pardld, use the pardle hintsto force pardld

processing:

PARALLEL
NOPARALLEL
APPEND
NOAPPEND
PARALLEL_INDEX

An example would be:

SELECT /*+ FULL(clients) PARALLEL(clients,5,3)*/ client_id,

client _nane,

client_address FROM cli ents;

By using hints the developer and tuning DBA can exercise ahigh leve of control over
how a statement is processed using the pardlel query option. Theinitidization
parameters for use with Oracle Pardld Query in dl versonsis shown in Table 4.

PARAMETER DESCRIPTION

In Oracle7

PARALLEL_MAX_SERVERS The maximum number of pardld query
daves

PARALLEL MIN_SERVERS The minimum number of pardld query
daves

PARALLEL_MIN_PERCENT

Sets the minimum percent of query daves
which must be avallable.

PARALLEL_SERVER IDLE TIME

Max dlowed idle time in minutes before a
daveisterminated.

In Oracle8

OPTIMIZER_PERCENT_PARALLEL

If set to nonzero dlows optimizer to look
at DOP when calculating cost. Low favors
indexes, high favors tables.

PARALLEL_ADAPTIVE MULTI_USER

If set, reduces DOP based on user load

PARALLEL_BROADCAST_ENABLED

Improves pardld performance in hash
and mergejoins.

PARALLEL_EXECUTION_MESSAGE_SIZE

Specifies the Size of the pardld execution
MeSsages.

PARALLEL_MIN_MESSAGE_POOL

Minimum amount of shared pool

dlocated to pardle query if no large pool
configured.

2 UNDOCUMENTED PARAMETERS

In Oracledi

PARALLEL_AUTOMATIC_TUNING Providesfor fully auttomatic tuning of
parald query processing, overrides
PARALLEL_ADAPTIVE_MULTI_USER
if .

PARALLEL_THREADS PER CPU Sets number of threads or processes a CPU
can handle during apardle query
operation.

11 UNDOCUMENTED PARAMETERS

Table 4. Pardld Query Initidization Parameters

Managing Multiple Buffer Pools in Oracle8

In Oracle8 and Oracle8i the database block buffer has been split into three possible aress,
the default, keep and recycle buffer pool aress. It is not required that these three pools be
used, only one, the default pool configured with the DB_BLOCK BUFFERS
iniidization parameter must be present, the others are “ sub” pool to this main pool. How
are the various pools used?

If atable, index or cluster is created with specifying that the KEEP or RECY CLE pool be
used for its data, then it is placed in the default pool when it is accessed. Thisis sandard
Oracle? behavior and if no specia action is taken to use the other pools then thisisadso
standard Oracle8 and OracleBl behavior. Theinitidization parameters
DB_BLOCK_BUFFERS and DB_BLOCK_LRU_LATCHES mug be st if multiple
pools are to be used:

DB_BLOCK_BUFFERS = 2000
DB BLOCK_LRU LATCHES= 10

The KEEP database buffer pool is configured using the BUFFER_POOL_KEEP
initidization parameter which looks like so:

BUFFER_POOL_KEEP = ‘100, 2’

The two specified parameters are the number of buffers from the default pool to assgn to
the keep pool and the number of LRU (least recently used) latchesto assign to the keep
pool. The minimum number of buffers assgned to the poal is 50 times the number of
assigned latches. The keep pool, asits name implies, is used to store object data that
shouldn’t be aged out of the buffer pool such aslook up information and specific
performance enhancing indexes. The objects are assigned to the keep pool through either

their creation satement or by specificaly assgning them to the pool using the ALTER
command. Any blocks aready in the default pool are not affected by the ALTER
command, only subsequently accessed blocks.

The keep pool should be szed such that it can hold al the blocks from dl of the tables
created with the buffer pool set to KEEP.

The RECY CLE database buffer poal is configured using the
BUFFER _POOL_RECY CLE initidization parameter which looks like so:

BUFFER _POOL_RECYCLE = * 1000, 5’

The two specified parameters are the number of buffers from the default pool to assign to
the recycle pool and the number of LRU (least recently used) latches to assign to the keep
pool. The minimum number of buffers assgned to the pool is 50 times the number of
assigned latches. The recycle poal, asits name implies, is used to store object data that
should be aged out of the buffer pool rapidly such as searchable LOB information. The
objects are assigned to the recycle pool through ether their crestion statement or by
specificaly assgning them to the pool using the ALTER command. Any blocks dready

in the default pool are not affected by the ALTER command, only subsequently accessed
blocks.

Aslong astherecycle pool shows low block contention it is Sized correctly.

With the above setpoints for the default, keep and recycle pools the default pool would
end up with 900 buffersand 3 Iru latches.

The default pool holds both the keep and recycle pools, it must be sized according to the
falowing formulaas aminimum:

Default = (keep + recycle + (total_of non-
keep or_recycle object sizes/100))/DB_BLOCK_SIZE

Each object not explicitly assigned to the keep or recycle poolswill be placed into the
default pool when it is accessed. Asagenerd rule of thumb the data currently in use will
be equa to gpproximately 5 to 10 percent of the physica database objects such astables,
clusters and indexes. | suggest to start at five percent and move up from there,

The keep buffer pool should be sized to the total size of the data objects that are explicitly
sgned to the pool. Remember, the keep pool is designed to hold objects that would have
been cached in earlier versons of Oracle. Generdly spesking smdl indexes, lookup
tables, smdl active data tables are good candidates for the keep pool. To size the pool
you must have a good estimate of the sSize of the objects you want to keep.

Probably the mogt difficult pool to sze will be the recycle pool. The reason the recycle
pool isdifficult to Szeisthat it is designed to hold trandent data objects (such as chunks
of LOB dataitems.) | would suggest to size the recycle pool according to the following
formula

Recycle = (SUM(size non_lob_object(1-n)/20) + (lob_chunk_size i(1-n) *
No_smul_accesses i))

Thefirg part of thisformulaisfor non-lob objects that might be searched in large pieces
such as partitioned tables. If you can find the partition size then exclude the divide by 20
and just use the partition Sze.

The second half of the formula addresses LOB (BLOB, CLOB, NCLOB) type objects
that will be accessed in chunks such as for searching or comparing using piece-wise
logic. The specified chunk size for each assigned object times the number of expected
different Smultaneous accesses is used to derive the area Size required.

The sum of the above two numbers should give a size for the recycle pool.

Since the classc method of tuning the shared poal is not available in Oracle8i we must
examine new methods to achieve the same ends. Thisinvolves looking a what Oracle

has provided for tuning the new pools. A new script, catperf.sgl offers severd new views
for tuning the Oracle buffer pools. These views are:

V$BUFFER_POOL -- Provides tatic information on pool configuration
V$BUFFER_POOL_STATISTICS -- Provides Pool related statistics
VIDBWR _WRITE_HISTOGRAM -- Provides summary information on DBWR
write activities

V$DBWR_WRITE_LOG -- Provides write information for each buffer area.

Of the four new viewsthe V$BUFFER_POOL_STATISTICS view seems the most
useful for tuning the buffer pool. The V$BUFFER_POOL_STATISTICS view contains
datistics such asbuffer_busy waits, free buffer_inspected, dirty _buffers inspected
and physicd write related data for each of the pool aress.

If abuffer pool shows excessve numbers of dirty _buffers ingpected and high amounts of
buffer_busy waits then it probably needs to be increased in size.

When configuring LRU latches and DBWR processes remember that the latches are
assigned to the pools sequentidly and to the DBRW processes round robin. The number
of LRU processes should be equa to or amultiple of the value of DBWR processes to
ensure thet the DBRW load is balanced across the processes.

Using Outlines in Oracle8i

In versgons of Oracle prior to Oracle8i the only way to stabilize an execution plan wasto
ensure that tables where analyzed frequently and that the relative ratios of rowsin the
tables involved stayed relatively stable. Neither of these options in pre-OracleSi for
stabilizing execution plans worked 100 percent of the time. In OracleSi a new feature
known as OUTLINES has been added.

New in Oracle8i isthe OUTLINE capability. An outline allows the DBA to tune a SQL
gtatement and then store the optimizer plan for the statement in what is known as an
OUTLINE. From that point forward whenever an identical SQL statement to the onein
the OUTLINE isused, it will use the optimizer ingtructions contained in the OUTLINE.

This gtoring of plan outlines for SQL statements is known as plan sability and insures
that changes in the Oracle environment don't affect the way a SQL statement is optimized
by the cost based optimizer. 1f you wish, Oracle will define plansfor al issued SQL
datements a the time they are executed and this stored plan will be reused until atered or
dropped. Generdly | do not suggest using the automatic outline festure asit can lead to
poor plans being reused by the optimizer. It makes more sense to monitor for high cost
gtatements and tune them as required, storing an outline for them only once they have
been properly tuned.

The use of OUTLINES dso facilitates the tuning of systems where the code cannot be
changed. This is accomplished through the concept of “gedth hints’ that is, hints that are
gpplied at parse time but are otherwise invisble. An example use of this technique would
be where there are two indexes that, due to the way cost isfigured, are not being used
properly for aspecific query. By dropping the offending index, creating an outline with

the proper index being used and then recreating the index that was dropped you can force
the use of a specific index without changing the code.

Aswith the storage of SQL in the shared pool, storage of outlines depends on the
Satement being reissued in an identical fashion each timeit isused. If even one spaceis
out of place the stored outline is not reused. Therefore your queries should be stored as
PL/SQL procedures, functions or packages (or perhaps Javaroutines) and bind variables
should aways be used. This alows reuse of the stored image of the SQL aswell asreuse
of stored outlines.

Remember that to be useful over the life of an gpplication the outlines will have to be
periodicaly verified by checking SQL statement performance. If performance of SQL
statements degrades the stored outline may have to be dropped and regenerated after the
SQL isretuned.

Creation of a OUTL INE object

Outlines are created usng the CREATE OUTLINE command, the syntax for this
command is

CREATE [OR REPLACE] OUTLI NE outline_nane
[FOR CATEGORY cat egory_nane]
ON st at enent ;

Where:
Outline_name -- is a unique name for the outline

[FOR CATEGORY category_name] — This optiona clause allows more than one outline
to be associated with a single query by specifying multiple catagories each named
uniquely.
ON statement — This specifies the statement for which the outline is prepared.

An example would be:

CREATE OR REPLACE OUTLI NE get _tabl es
ON
SELECT
a. owner,
a.tabl e _nane,
a.tabl espace_nane,
SUM b. byt es),
COUNT(b. t abl e_nane) extents
FROM
dba_t abl es a,

dba_extents b
WHERE

a. owner =b. owner
AND a. tabl e _nane=b. tabl e _nane
GROUP BY
a.owner, a.table _nane, a.tabl espace_nane;

Assuming the above sdlect isa part of astored PL/SQL procedure or perhaps part of a
view, the stored outline will now be used each time an exactly matching SQL statement is
issued.

Alteringa OUTLINE

Outlines are dtered using the ALTER OUTLINE or CREATE OR REPLACE form of
the CREATE command. The format of the command isidentical whether it isused for
initid crestion or replacement of an existing outline. For example, what if we want to add
SUM (b.blocks) to the previous example?

CREATE OR REPLACE OUTLI NE get _tabl es
ON

SELECT

a. owner,

a.tabl e_nane,

a.tabl espace_nane,

t. Lo | s L Ll B
SUM b. byt es),

COUNT(b. t abl e_nane) extents,
SUM b. bl ocks)
FROM
dba_t abl es a,
dba_extents b
WHERE
a. owner =b. owner
AND a.tabl e _nane=b. tabl e _nanme
GROUP BY
a.owner, a.table_nane, a.tabl espace_nane;

The above example has the effect of dtering the stored outline get_tables to include any
changes brought about by incluson of the SUM(b.blocks) in the SELECT ligt. But what
if we want to rename the outline or change a category name? The ALTER OUTLINE
command has the format:

ALTER OUTLI NE outline_name

[REBUI LD]

[RENAME TO new_outline_nane]

[CHANGE CATEGORY TO new_cat egory_nane]

The ALTER OUTLINE command dlows usto rebuild the outline for an existing
outline_name as well as rename the outline or change its category. The benefit of usng
the ALTER OUTLINE command is that we do not have to respecify the complete SQL
gtatement as we would have to using the CREATE OR REPLACE command.

Dropping an OUTLINE

Outlines are dropped using the DROP OUTLINE command the syntax for this command
is

DROP QUTLI NE out |l i ne_nane;

Use of the OUTLN PKG To Manage SQL Stored Qutlines

The OUTLN_PKG package provides for the management of stored outlines. A stored
outline is an execution plan for a specific SQL statement. A stored outline permitsthe
optimizer to Sabilize a SQL statements execution plan giving repegtable execution plans
even when data and statistics change.

The DBA should take care to who they grant execute on the OUTLN_PKG, by defaullt it
is not granted to the public user group nor isa public synonym created.

The following sections show the packagesin the OUTLN_PKG.

_

DROP_UNUSED

The drop_unused procedure is used to drop outlines that have not been used in the
compilation of SQL statements. The drop_unused procedure has no arguments.

SQL> EXECUTE OUTLN_PKG. DROP_UNUSED;
PL/ SQL procedure successfully executed.

To determineif a SQL statement OUTLINE is unused, perform a select againgt the
DBA_OUTLINES view:

SQ.> desc dba_outl i nes;

Narre Nul | ? Type

NAME VARCHAR2(30)
OMNER VARCHAR2(30)
CATEGORY VARCHAR2(30)
USED VARCHAR2(9)
TI MESTAWP DATE

VERSI ON VARCHAR2(64)
SQ_TEXT LONG

SQ > set | ong 1000
SQL> select * fromdba_outlines where used=" UNUSED ;

NAMVE OMER CATEGORY USED TI MESTAMP VERSI ON SQL_TEXT

TEST_QUTLI NE SYSTEM TEST UNUSED 08- MAY-99 8.1.3.0.0 select a.table_nane,
b. t abl espace_nane,
c.file_name from
dba_tables a,
dba_t abl espaces b,
dba_data files ¢
wher e
a. tabl espace_nane =
b. t abl espace_nane
and b.tabl espace_nane
= c. tabl espace_nane
and c.file_id =
(sel ect
mn(d.file_id) from
dba_data files d
wher e
c.tabl espace_nane =
d. t abl espace_nane)

1 row sel ect ed.
SQ > execute sys.outl n_pkg. drop_unused;
PL/ SQ. procedure successfully conpl et ed.

SQL> select * fromdba_outlines where used=" UNUSED ;

no rows sel ected

Remember, the procedure drops al unused outlines so use it carefully.
DROP_BY_CAT

The drop_by cat procedure drops dl outlines that belong to a specific category. The
procedure drop by cat has one input variable, cat, aVARCHAR 2 that corresponds to

the name of the category you want to drop.

SQL> create outline test_outline for category test on
2 select a.table_nane, b.tablespace_name, c.file_nane from
3 dba_tables a, dba_tabl espaces b, dba_data_files c
4 where
5 a.tabl espace_nanme=b. tabl espace_nane
6 and b.tabl espace_nane=c.tabl espace_nane
7 and c.file_id = (select mn(d.file_id) fromdba_data_files d
8 where c.tabl espace_nane=d.t abl espace_nane)
9 .
e

Op rafion 180 succeeded.

SQL> select * from dba_outlines where category="TEST

NANME OWNER CATEGORY USED Tl MESTAMP VERSI ON SQL_TEXT

TEST_OUTLI NE SYSTEM TEST UNUSED 08- MAY-99 8.1.3.0.0 select a.table_nane, b.ta
bl espace_nanme, c.file_nam
e from

dba_t abl es a, dba_tabl esp
aces b, dba_data files ¢
wher e

a.tabl espace_nane=b. tabl e
space_nane

and b.tabl espace_nanme=c.t
abl espace_name

and c.file_id = (select m
in(d.file_id) from dba_da
ta files d

where c.tabl espace_nanme=d
.t abl espace_nane)

1 row sel ected.

SQL> execute sys.outln_pkg.drop_by_cat (' TEST');

PL/ SQL procedure successfully conpl eted.

SQL> select * from dba_outlines where category="TEST

no rows sel ected

UPDATE_BY_CAT

The update by cat procedure changes al of the outlinesin one category to anew
category. If the SQL text in an outline dready has an outline in the target category, then it
isnot merged into the new category. The procedure has two input variables, oldcat
VARCHARZ2 and newcat VARCHAR2 where oldcat corresponds to the category to be
merged and newcat is the new category that oldcat is to be merged with.

SQL> create outline test_outline for category test on
2 select a.table_name, b.tablespace_nane, c.file_name from
3 dba_tables a, dba_tabl espaces b, dba_data_ files c
4 where

5 a.tabl espace_nanme=b. tabl espace_nane

6 and b.tabl espace_name=c.tabl espace_nane

7 and c.file_id = (select mn(d.file_id) fromdba_data_files d
8 where c.tabl espace_nanme=d.tabl espace_nane)

9 -

Operation 180 succeeded.

SQL> create outline test_outline2 for category test on
2 select * fromdba_data_files;

Operation 180 succeeded.

SQL> create outline prod_outlinel for category prod on
2 select owner,table_nanme from dba_t abl es;

Operation 180 succeeded.

SQL> create outline prod_outline2 for category prod on
2 select * fromdba_data files;

Operation 180 succeeded.

SQL> sel ect name, category from dba_outlines order by category
NANME CATEGORY

PROD_OUTLI NE1 PROD
PROD_OUTLI NE2 PROD
TEST_OUTLI NE2 TEST
TEST_OUTLI NE TEST

4 rows selected.
SQL> execute sys.outl n_pkg. update_by_cat (' TEST',' PROD');
PL/ SQL procedure successfully conpl eted.

SQL> sel ect name, category from dba_outlines order by category;
NANME CATEGORY

TEST_OUTLI NE PROD
PROD_OUTLI NE1 PROD
PROD_OUTLI NE2 PROD
TEST_OUTLI NE2 TEST

4 rows sel ected.

Asaresult of the update by cat procedure cal we moved the TEST _OUTLINE outline
into the PROD category, but the TEST_OUTLINEZ, sinceit is aduplicate of
PROD_OUTLINEZ2, was not merged.

Summary

The OUTLN_PKG is apowerful new fegture in Oracle. By its capability to add hintsto
Oracle SQL statements without dtering code it dlows the DBA greeter flexibility in
tuning “hands off” systems than ever before.

Using Oracle8i Resource Plans and Groups

New in Oracle8i isthe concept of Oracle resource groups. A resource group specification
alowsyou to specify that a specific group of database users can only use acertain

percentage of the CPU resources on the system. A resource plan must be devel oped that
defines the various level s within the application and their percentage of CPU resourcesin
awaterfal type structure where each subsequent levels percentages are based on the
previous levels.

Rather than have asmple CREATE RESOURCE PLAN command, Oracle8i has a series
of packages which must be run in a specific order to create a proper resource plan. All
resource plans are created in a pending area before being validated and committed to the
database. The requirements for a valid resource plan are outlined in the definition of the
DBMS RESOURCE MANAGER.VALIDATE_PENDING_AREA procedure below.
Resource plans can have up to 32 levels with 32 groups per leve dlowing the most
complex resource plan to be easily grouped. Multiple plans, sub-plans and groups can dl
be tied together into an application spanning CPU resource utilizetion rule st. Thisrule

set isknown as a set of directives.

An example would be asmple 2-tier plan like that shown in Figure 41.

Figure 41Example Resource Plan

Plan: MASTER

l

Plan Directives

l

Set level CPU_P1 in directive

Sub Plan:

Sub Plan: OTHER_GROUPS Sub Plan:

Users (REQUIRED) Reports
CPU: CPU: CPU:
60 20 20

l l Set level CPU_P2 in directive l l

Sub Group: Sub Group: Sub Group: Sub Group:

Online_Users Batch_Users Online_Reports Batch_Reports
cPU: cPu: ‘cPU: “cPU:
70 30 70 30

An example of how this portioning out of CPU resources works would be to examine
what happensin the plan shown in Figure 41. In figure 41 we have atop level called
MASTER which can have up to 100% of the CPU if it requiresit. The next leve of the
plan creates two sub-plans, USERS and REPORTS which will get maximums of 60 and
20 percent of the CPU respectively (we aso have the required plan OTHER_GROUPS to

which we have assigned 20 percent, if auser isnot assgned to a specific group, they get
OTHERS). Under USERS we have two groups, ONLINE_USERS and BATCH_USERS.
ONLINE_USERS gets 70 percent of USERS 60 percent or an overall percent of CPU of
42 percent while the other sub-group, BATCH_USERS gets 30 percent of the 60 percent

for atota overall percent of 18.

The steps for creating a resource plan, its directives and its groups is shown in Figure 42.

Figure 42Steps to Create a Resource Plan

Package Call

Step

dbms_resource__manager_privs.grant_system_ privilege

Grant Privileges to
Plan Administrator

’

dbms_resource_manager.create__pending_area();

Create Pending Area

’

Manually (see Figure 18.1)

Create Plan Map

’

dbms_resource_manager.create_plan

Create Top Level Plan [«

:

dbms_resource_manager.create_plan

Create Sub Plans

:

dbms_resource_manager.create_consumer_group

Create Groups and
Sub Groups

’

dbms_resource__manager.create_ plan_directive

Create Directives

i

dbms_resource__manager.validate__pending_area

Validate Pending Area

Validation
Successful?2

Yes

3

dbms_resource__manager.submit_pending_area

Submit Pending Area

dbms_resource_manager_privs.grant_switch__consumer_group

’

dbms_resource_manager.set_initial_consumer_group
dbms_resource_manager.switch__consumer_group_for_user
dbms_resource__manager.switch_consumer_group_for_sess

Grant Groups to Users

One thing to notice about Figure 42 is that the last step shows severa possible packages
which can be run to assign or change the assgnment of resource groups. The first

package listed,

DBMS _RESOURCE_MANAGER_PRIVS.GRANT_SWITCH_CONSUMER_GROUP
must be run the firgt time a user is assigned to a resource group or you won't be able to
assign the user to the group. After the user has been given the
SWITCH_CONSUMER_GROUP system privilege you don't have to re-run the package.
Figure 3 shows the code to create the resource plan in Figure 41. Figure 44 shows the
results from running the source in figure 43.

Figure 43Script to create example resource plan

set echo on

spool test_resource_pl an. doc

-- Grant systemprivilege to plan adm nistrator

execute

dbns_resource_manager _privs.grant_system privil ege(' SYSTEM ,' ADM NI ST
ER_RESOURCE_MANAGER' , TRUE) ;

--connect to plan adm nistrator

CONNECT systenf system test @rtestl. world

-- Create Plan Pending Area

EXECUTE dbns_resource_manager. create_pendi ng_area();

-- Create plan

execut e dbrms_resource_nanager.create_pl an(' MASTER , ' Exanpl e Resource
Pl an',' EMPHASI S');

execut e dbnms_resource_manager. create_pl an(' USERS' ,' Exanpl e Resource
Sub Pl an',' EMPHASI S');

execut e dbnms_resource_nmnager. create_pl an(' REPORTS' , ' Exanpl e Resource
Sub Plan',' EMPHASI S');

--Create tiers of groups in plan

EXECUTE
dbns_resource_manager. create_consuner _group(' ONLI NE_USERS' , ' 3rd | eve
group', ' ROUND- ROBI N) ;

EXECUTE
dbms_resource_manager. creat e_consuner _group(' BATCH USERS' ,"' 3rd | eve
group', ' ROUND- ROBI N) ;

EXECUTE
dbns_resource_manager. creat e_consuner _group(' ONLI NE_REPORTS', ' 2rd

| evel group',' ROUND-ROBIN) ;

EXECUTE
dbns_resource_manager. creat e_consuner _group(' BATCH REPORTS' , ' 2rd

| evel group',' ROUND-ROBIN);

-- Create plan directives

EXECUTE dbns_resource_manager.create_plan_directive(' MASTER ,

' USERS' , 0, 60, 0,0, 0,0, 0,0, NULL) ;

EXECUTE dbns_resource_manager. create_plan_directive(' MASTER ,
' REPORTS' 0, 20,0,0,0,0,0,0, NULL);

EXECUTE

dbrs_resource_manager. create_plan_directive(' MASTER , ' OTHER_GROUPS'
0, 20,0,0,0,0,0, 0, NULL) ;

EXECUTE dbns_resource_manager. create_plan_directive(' USERS',

" ONLI NE_USERS', 0,0,70,0,0,0,0,0, NULL);

EXECUTE dbns_resource_manager.create_plan_directive(' USERS',

' BATCH_USERS' , o, 0, 30, 0, 0,0, 0, 0, NULL)

EXECUTE

dbns_resource_manager. create_plan_directive(' REPORTS' ,' ONLI NE_REPORTS
',0,0,70,0,0,0,0,0, NULL) ;

EXECUTE

dbnms_resource_manager. create_plan_directive(' REPORTS ,' BATCH REPORTS
, 0,0,30,0,0,0,0,0,NULL);

-- Verify Plan

EXECUTE dbns_resource_manager. val i dat e_pendi ng_ar ea;

-- Submit Plan

EXECUTE dbms_resour ce_manager. subm t _pendi ng_area
spool off
set echo off

Notice how the script in figure 3 follows the chart in Figure 2. These are the proper steps
to create aresource plan. Figure 4 shows the results from running the script in Figure 3.

Figure 44Example run of script to create example

resource plan

SQ> -- Grant systemprivilege to plan adm nistrator

SQL> - -

SQL> execute

dbns_resource_manager _privs.grant_system privil ege(' SYSTEM ,' ADM NI ST
ER_RESOURCE_MANAGER' , TRUE) ;

PL/ SQL procedure successfully conpl et ed.

SQL> - -

SQ.> --connect to plan adm nistrator

SQL> - -

SQL> CONNECT system systemtest @rtestl.world
Connect ed.

SQL> - -

SQL> -- Create Plan Pending Area

SQL> --

SQL> EXECUTE dbns_resource_manager. create_pendi ng_area();

PL/ SQL procedure successfully conpl et ed.

SQL> - -
SQ.> -- Create plan

_

SQL> execute dbnms_resource_manager. create_pl an(' MASTER , ' Exanpl e
Resource Plan',' EMPHASI S');

PL/ SQL procedure successfully conpl et ed.

SQL> execute dbms_resource_manager. create_plan(' USERS' , ' Exanpl e
Resource Sub Plan',' EMPHASI S');

PL/ SQL procedure successfully conpl et ed.

SQL> execute dbns_resource_manager. create_pl an(' REPORTS' , ' Exanpl e
Resource Sub Plan',' EMPHASI S');

PL/ SQL procedure successfully conpl et ed.

SQL> - -

SQL> --Create tiers of groups in plan
SQL> - -

SQL> EXECUTE

dbns_resource_manager. create_consuner _group(' ONLI NE_USERS' , ' 3rd | eve
group',' ROUND- ROBI N') ;

PL/ SQL procedure successfully conpl et ed.

SQL> EXECUTE
dbns_resource_manager. create_consuner _group(' BATCH USERS' ,"' 3rd | eve
group', ' ROUND- ROBI N) ;

PL/ SQL procedure successfully conpl et ed.

SQL> EXECUTE
dbns_r esour ce_nmanager . creat e_consumner _group(' ONLI NE_REPORTS' , ' 2rd
| evel group',' ROUND- ROBIN);

PL/ SQL procedure successfully conpl et ed.

SQL> EXECUTE

dbns_r esour ce_manager . creat e_consumner _group(' BATCH REPORTS' , ' 2rd
| evel group',' ROUND-ROBIN);

PL/ SQL procedure successfully conpl et ed.

SQL> - -

SQL> -- Create plan directives

SQL> - -

SQL> EXECUTE dbns_resource_manager. create_plan_directive(' MASTER ,
' USERS' , 0, 60, 0,0, 0,0, 0, 0, NULL) ;

PL/ SQL procedure successfully conpl et ed.

SQL> EXECUTE dbms_resource_manager. create_plan_directive(' MASTER ,
' REPORTS' , 0, 20,0, 0,0,0,0, 0, NULL);

PL/ SQL procedure successfully conpl et ed.

SQL> EXECUTE
dbns_resource_manager.create_plan_directive(' MASTER , ' OTHER_GROUPS'
0, 20,0,0,0,0,0,0, NULL);

PL/ SQL procedure successfully conpl et ed.

SQL> EXECUTE dbms_resource_manager. create_plan_directive(' USERS' ,
" ONLI NE_USERS', 0,0,70,0,0,0,0,0, NULL);

PL/ SQL procedure successfully conpl et ed.

SQL> EXECUTE dbns_resource_manager. create_plan_directive(' USERS',
' BATCH_USERS' o, 0,30,0,0,0,0,0, NULL)

PL/ SQL procedure successfully conpl et ed.

SQL> EXECUTE
dbns_resource_manager.create_plan_directive(' REPORTS ,' ONLI NE_REPORTS
',0,0,70,0,0,0,0, 0, NULL);

PL/ SQL procedure successfully conpl et ed.

SQL> EXECUTE
dbms_resource_manager. create_plan_directive(' REPORTS ,' BATCH REPORTS
, 0,0,30,0,0,0,0,0,NULL);

PL/ SQL procedure successfully conpl et ed.

SQL> - -

SQ> -- Verify Plan

SQL> - -

SQL> EXECUTE dbms_resour ce_manager . val i dat e_pendi ng_ar ea

PL/ SQL procedure successfully conpl et ed.

SQL> --
SQ.> -- Submit Plan

SQL> - -
SQL> EXECUTE dbns_resour ce_manager. submit_pendi ng_area

PL/ SQL procedure successfully conpl et ed.

SQL> spool off

The other operations allowed against the components of the resource plan are ater and
drop. Let'slook at a quick drop example in Figure 45.

Figure 45 Example Drop Procedure
EXECUTE dbns_resource_manager . del et e_pl an(' MASTER) ;
EXECUTE dbmrs_resour ce_manager . del et e_pl an(' USERS') ;
EXECUTE dbmns_resource_manager . del et e_pl an(' REPORTS') ;

--delete tiers of groups in plan

EXECUTE dbns_resource_manager. del et e_consuner _group(' ONLI NE_USERS') ;
EXECUTE dbns_resource_manager. del et e_consuner _group(' BATCH _USERS') ;
EXECUTE

dbns_resource_manager . del et e_consuner _group(' ONLI NE_REPORTS') ;
EXECUTE dbns_resource_manager . del et e_consuner _group(' BATCH REPORTS') ;

Notice how you must drop al parts of the plan, thisis because Oracle dlows Orphan
groups and plansto exist. Asyou can tdl from looking at the scriptsthe

DBMS RESOURCE _MANAGER and DBMS RESOURCE_MANAGER PRIVS
packages are critica to implementing Oracle resource groups. Let's examine these
packages.

The DBMS RESOURCE_MANAGER packageis used to administer the new resource
plan and consumer group options in OracleBi. The package contains severd procedures
that are used to create, modify, drop and grant access to resource plans, groups, directives
and pending areas. The invoker must have the
ADMINISTER_RESOURCE_MANAGER system privilege to execute these procedures.
The proceduresto grant and revoke this privilege are in the package

DBMS RESOURCE_MANAGER _PRIVS. The proceduresin

DBMS RESOURCE_MANAGER arelisted in table 5.

Table 5 DBMS RESOURCE _MANAGER_PACKAGES

Procedure Purpose
CREATE_PLAN Creates entries which define resource plans.
UPDATE_PLAN Updates entries which define resource plans.
DELETE_PLAN Deletes the specified plan aswell asdl the
plan directivesit refers to.
DELETE_PLAN_CASCADE Deletes the specified plan aswdll as all its
descendants (plan directives, subplans,
consumer groups).
CREATE_CONSUMER_GROUP Creates entries which define resource
consumer groups.
UPDATE_CONSUMER_GROUP Updates entries which define resource
consumer groups.
DELETE CONSUMER_GROUP Deletes entries which define resource
consumer groups.
CREATE PLAN DIRECTIVE Creates resource plan directives.
UPDATE_PLAN_DIRECTIVE Updates resource plan directives.
DELETE_PLAN_DIRECTIVE Deletes resource plan directives.
CREATE_PENDING_AREA Creates awork areafor changes to resource
manager objects.
VALIDATE_PENDING_AREA Validates pending changes for the resource
manager.
CLEAR_PENDING_AREA Clearsthework areafor the resource manager.
SUBMIT_PENDING_AREA Submits pending changes for the resource
manager.
SET INITIAL_CONSUMER_GROUP Assigns theinitial resource consumer group
for auser.

SWITCH_CONSUMER_GROUP_FOR_SESS | Changes the resource consumer group of a
specific session.

SWITCH_CONSUMER_GROUP_FOR_USER | Changes the resource consumer group for al
sessions with a given user name.

The caling syntax for al of the DBMS_RESOURCE_MANAGER packages follow.
Syntax for the CREATE PLAN Procedure:

DBMS_RESOURCE_MANAGER. CREATE_PLAN (

pl an I N VARCHAR?Z,
comrent I N VARCHAR?,
cpu_nth I N VARCHAR2 DEFAULT ' EMPHASI S' ,

max_active_sess_target_nth I N VARCHAR2 DEFAULT
" MAX_ACTI VE_SESS_ABSCOLUTE'
parallel _degree |imt_nth |IN VARCHAR2 DEFAULT
" PARALLEL_DEGREE LI M T_ABSOLUTE') ;
Where:

Pan - the plan name

Comment - any text comment you want associated with the plan name
Cpu_mth - one of EMPHASIS or ROUND-ROBIN
max_active sess target mth - dlocation method for max. active sessons
pardle_degree limit_ mth - dlocation method for degree of pardleism

Syntax for the UPDATE _PLAN Procedure:

DBV5_RESOURCE_MANAGER. UPDATE_PLAN (
pl an I N VARCHAR?,
| N VARCHAR2 DEFAULT NULL,
[
[
[

N
new_conment N
N VARCHAR2 DEFAULT NULL,
N
N

new _cpu_nth

new _nmax_active_sess target _nth

new parallel _degree limt_mth

Where:

plan - name of resource plan
new_comment - new user's comment
new_cpu_mth - name of new dlocation method for CPU resources
new_max_active sess target mth - name of new method for max. active
SLSI0NS
new_pardle_degree limit_ mth - name of new method for degree of paraleism

VARCHARZ DEFAULT NULL,
VARCHAR2 DEFAULT NULL) ;

Syntax for the DELETE PLAN Procedure:

DBMS_RESOURCE_MANAGER. DELETE_PLAN (
pl an | N VARCHAR?) ;
Where:

Pan - Name of resource plan to delete.

Syntax for the DELETE_PL AN Procedure:

DBMS_RESOURCE_MANAGER. DELETE_PLAN_CASCADE (

pl an I N VARCHAR2) ;
Where:
Pan - Name of plan.

Syntax for the CREATE RESOURCE_GROUP Procedure:

DBVS_RESOURCE_MANAGER. CREATE_CONSUMVER_GROUP (
consumer _group | N VARCHARZ,

comrent | N VARCHAR?,
cpu_nth I N VARCHAR2 DEFAULT ' ROUND- ROBI N) ;
Where:

consumer_group - Name of consumer group.
Comment - User's comment.

cpu_mth - Name of CPU resource alocation method.

Syntax for the UPDATE RESOURCE_GROUP Procedure:

DBV5_RESOURCE_MANAGER. UPDATE_CONSUVMVER _GROUP (
consuner _group I N VARCHARZ,

new_conmrent | N VARCHAR2 DEFAULT NULL
new _cpu_nth I N VARCHAR2 DEFAULT NULL);
Where:

plan - name of resource plan

new_comment - new user's comment

new_cpu_mth - name of new alocation method for CPU resources
new_max_active sess target mth - name of new method for max. active sessons
new_pardld_degree limit_ mth - name of new method for degree of pardldism

Syntax for the DELTE RESOURCE_GROUP Procedure:

DBVS_RESOURCE_MANAGER. DELETE _CONSUMVER _GROUP (
consuner _group | N VARCHAR?) ;
Where:

plan - name of resource plan.

Syntax for the CREATE PLAN DIRECTIVE Procedure:

DBMS_RESOURCE_MANAGER. CREATE_PLAN_DI RECTI VE (

cpu_p7
cpu_p8
max_active_sess_target pl

NUVBER DEFAULT NULL
NUMBER DEFAULT NULL
NUVBER DEFAULT NULL

pl an I N VARCHARZ,
group_or _subpl an I N VARCHARZ,
conment I N VARCHARZ,
cpu_pl I N NUMBER DEFAULT NULL,
cpu_p2 I N NUMBER DEFAULT NULL,
cpu_p3 I N NUMBER DEFAULT NULL,
cpu_p4 I N NUMBER DEFAULT NULL,
cpu_p5 I N NUMBER DEFAULT NULL,
cpu_p6 I N NUMBER DEFAULT NULL
I N
I N
I N

paral |l el _degree_limt_pl |N NUMBER

Where:
plan - name of resource plan

group_or_subplan - name of consumer group or subplan
comment - comment for the plan directive
cpu_pl - first parameter for the CPU resource allocation method
cpu_p2 - second parameter for the CPU resource alocation method
cpu_p3 - third parameter for the CPU resource alocation method
cpu_p4 - fourth parameter for the CPU resource alocation method
cpu_pb5 - fifth parameter for the CPU resource dlocation method
Cpu_p6 - sxth parameter for the CPU resource allocation method
cpu_p7 - seventh parameter for the CPU resour ce dlocation method
cpu_p8 - eighth parameter for the CPU resource alocation method
max_active sess target pl - first parameter for the max. active sessons

alocation method

(RESERVED FOR FUTURE USE)

pardle_degree limit_pl - first parameter for the degree of pardldism

dlocation method

Syntax for the UPDATE PLAN DIRECTIVE Procedure:

DBMS_RESOURCE_MANAGER. UPDATE_PLAN_DI RECTI VE (

pl an I N VARCHARZ,

group_or _subpl an I N VARCHARZ,

new_comrent I N VARCHAR2 DEFAULT NULL,
new_cpu_pl IN NUMBER DEFAULT NULL,
new_cpu_p2 IN NUMBER DEFAULT NULL,
new _cpu_p3 IN NUMBER DEFAULT NULL,
new_cpu_p4 I N NUMBER DEFAULT NULL,
new_cpu_p5 IN NUMBER DEFAULT NULL,
new_cpu_p6 IN NUMBER DEFAULT NULL,
new_cpu_p7 IN NUMBER DEFAULT NULL,
new_cpu_p8 IN NUMBER DEFAULT NULL,
new_max_active_sess_target_pl I N NUVBER DEFAULT NULL,
new parallel _degree |imt_pl |IN NUMBER DEFAULT NULL);

Where:
plan- name of resource plan

group_or_subplan - name of group or subplan

new_comment - comment for the plan directive
new_cpu_pl - first parameter for the CPU dlocation method
new_cpu p2 - parameter for the CPU alocation method
new_cpu p3- parameter for the CPU dlocation method

new_cpu p4 - parameter for the CPU dlocation method
new_cpu_p5 - parameter for the CPU dlocation method

DEFAULT NULL);

new_cpu p6 - parameter for the CPU dlocation method
new_cpu p7 - parameter for the CPU dlocation method
new_cpu_p8 - parameter for the CPU dlocation method

new_max_active sess target pl- first parameter for the max. active sessons

adlocation method

(RESERVED FOR FUTURE USE)
new_paradld_degree limit_pl - first parameter for the degree of pardldism
dlocation method

Syntax for the DELETE PLAN DIRECTIVE Procedure:

DBMS_RESOURCE_MANAGER. DELETE_PLAN_DI RECTI VE (

pl an I N VARCHARZ,
group_or _subpl an I N VARCHAR2) ;
Where:

plan - name of resource plan
group_or_subplan - name of group or subplan.

Syntax for CREATE _PENDING_AREA Procedure:

This procedure lets you make changes to resource manager objects.

All changes to the plan schema must be done within a pending area. The pending area
can be thought of asa"scratch” areafor plan schema changes. The administrator creates
this pending area, makes changes as necessary, possibly validates these changes, and only
when the submit is completed do these changes become active.

Y ou may, a any time while the pending areais active, view the current plan schemawith
your changes by selecting from the gppropriate user views.

At any time, you may clear the pending areaif you want to stop the current changes. You
may aso cdl the VALIDATE procedure to confirm whether the changes you has made
arevdid. You do not have to do your changesin a given order to maintain a consstent
group of entries. These checks are dso implicitly done when the pending arealis
submitted.

Note:
Oracle dlows "orphan” consumer groups (i.e., consumer groups that have no plan
directives that refer to them). Thisisin anticipation that an administrator may want to
creste aconsumer group that isnot currently being used, but will be used in the future.
The procedure has no arguments.

DBMVS_RESOURCE_MANAGER. CREATE_PENDI NG AREA;

Syntax of the VALIDATE PENDING_AREA Procedure:

The VALIDATE_PENDING_AREA procedure is used to validate the contents of a
pending area before they are submitted. The procedure has no arguments.

DBMS_RESOURCE_MANAGER. VALI DATE_PENDI NG_AREA;

Usage Notes For the Vdidate and Submit Procedures.

Thefollowing rules must be adhered to, and they are checked whenever the validate or
submit procedures are executed:

No plan schemamay contain any loops.

All plans and consumer groups referred to by plan directives mugt exist.

All plans must have plan directives that refer to either plans or consumer groups.

All percentages in any given level must not add up to greater than 100 for the

emphasis resource alocation method.

No plan may be deleted thet is currently being used as atop plan by an active

ingtance.

6. For Oraclegi, the plan directive parameter, pardlel_degree limit_pl, may only appear
in plan directives that refer to consumer groups (i.e., not at subplans).

7. There cannot be more than 32 plan directives coming from any given plan (i.e,, no
plan can have more than 32 children).

8. There cannot be more than 32 consumer groupsin any active plan schema

9. Pansand consumer groups use the same namespace; therefore, no plan can have the
same name as any consumer group.

10. There must be a plan directive for OTHER_GROUPS somewhere in any active plan

schemaThis ensures that a sesson not covered by the currently active plan is

allocated resources as specified by the OTHER_GROUPS directive.

Eal SN

o

If any of the above rules are broken when checked by the VALIDATE or SUBMIT
procedures, then an informative error message is returned. Y ou may then make changes
to fix the problem(s) and reissue the vaidate or submit procedures.

Syntax of the CLEAR_PENDING AREA Procedure:

The CLEAR_PENDING_AREA procedure clears the pending area without submitting it,
al changes or entries are logt. The procedure has no arguments.

DBMVS_RESOURCE_MANAGER. CLEAR PENDI NG AREA;

Syntax of the SUBMIT_PENDING AREA Procedure:

The SUBMIT_PENDING_AREA procedure submits the contents of the pending area.
First the contents are vaidated and then they are stored as valid in the database. The
procedure has no arguments.

DBMS_RESOURCE_MANAGER. SUBM T_PENDI NG_AREA,

Syntax of the SET_INITIAL_CONSUMER_GROUP Procedure:

The SET_INITIAL_CONSUMER_GROUP procedure sets the initial consumer group to
which auser will belong. The user must have been granted
SWITCH_RESOURCE_GROUP permission before you attempt to run this procedure.

DBMS_RESOURCE_MANAGER. SET_I NI TI AL_CONSUMER_GROUP (

user | N VARCHAR2,
consuner _group | N VARCHAR?) ;
Where:

User — The user that isto have the resource group st.
Consumer_group — The resource (or consumer) group to grant to the user.

Syntax of the SWITCH CONSUMER GROUP_FOR_SESS Procedure:

The SWITCH_RESOURCE_GROUP_FOR_SESS procedure alows an sdminitrator to
switch a user's consumer group for the duration of the current sesson.

DBMS_RESOURCE_MANAGER. SW TCH_CONSUVER GROUP_FOR_SESS(
SESSI ON_I D I N NUVBER
SESSI ON_SERIAL | N NUVBER
CONSUMER GROUP | N VARCHAR?) :

Where:
session id - SID column from the view V$SESSION
sesson_serid - SERIAL# column from the view V$SESSION
consumer_group - name of the consumer group of which to switch.

Syntax of the SWITCH _CONSUMER _GROUP FOR_USER Procedure:

The SWITCH_CONSUMER _GROUP_FOR_USER switches a user's default consumer
group to anew group. Thisis a permanent change.

DBMS_RESOURCE_MANAGER. SW TCH_CONSUMER_GROUP_FOR_USER (
user | N VARCHAR?,
consuner _group | N VARCHAR?) ;

Where:
user - name of the user
consumer_group - name of the consumer group to switch to

The DBMS RESOURCE_MANAGER package has a companion package that grants
privileges in the redim of the resource consumer option. The companion package is
DBMS RESOURCE_MANAGER_PRIVS. The proceduresinside

DBMS RESOURCE_MANAGER_PRIVS are documented in table 6.

Table 6 DBMS_RESOURCE_MANAGER_PRIV'S Procedures

Procedure Purpose
GRANT_SYSTEM_PRIVILEGE Performs a grant of a system privilege.
REVOKE_SYSTEM_PRIVILEGE Performs a revoke of a system privilege.

GRANT_SWITCH_CONSUMER_GROUP | Grantsthe privilege to switch to resource
consumer groups.

REVOKE_SWITCH_CONSUMER_GROUP | Revokes the privilege to switch to resource

| consumer groups.

DBMS RESOURCE_MANGER_PRIVS Procedure Syntax

The cdling syntax for al of the DBMS RESOURCE_MANAGER_PRIV S packages
follow.

Syntax for the GRANT_SYSTEM_PRIVILEGE Procedure:

The GRANT_SYSTEM_PRIVILEGE procedure grants
ADMINISTER RESOURCE_MANAGER privilegeto auser. Currently thereisonly
one resource group system grant.

DBMS_RESOURCE_MANAGER PRI VS. GRANT_SYSTEM PRI VI LECGE (
gr ant ee_nane I N VARCHARZ,
privilege nane | N VARCHAR2 DEFAULT

" ADM NI STER_RESOURCE_MANAGER'
adm n_option I N BOOLEAN) ;

Where:
grantee_name - Name of the user or role to whom privilege isto be granted.
privilege_name - Name of the privilege to be granted.
admin_option - TRUE if the grant is with admin_option, FALSE otherwise.

Syntax for the REVOKE SYSTEM PRIVILGE Procedure:

The REVOKE_SYSTEM_PRIVILEGE procedure revokes the
ADMINISTER_RESOURCE_MANAGER privilege from auser.

DBMS_RESOURCE_MANAGER PRI VS. REVOKE_SYSTEM PRI VI LEGE (
revokee nane I N VARCHARZ,
privil ege name | N VARCHAR2 DEFAULT

" ADM NI STER_RESOURCE_MANAGER) ;

Where:
revokee_name - Name of the user or role from whom privilege isto be revoked.
privilege_name - Name of the privilege to be revoked.

Syntax of the GRANT _SWITCH CONSUMER_GROUP Procedure:

The GRANT_SWITCH_CONSUMER_GROUP procedure grants a user the ability to
switch resource groups. This privilege must be granted to a user before thair initid
resource group can be granted.

DBMS_RESOURCE_MANAGER_PRI VS. GRANT_SW TCH_CONSUMER_GROUP (
grant ee_nane I N VARCHARZ,
consumer _group | N VARCHARZ,
grant _option | N BOOLEAN) ;
Where:
grantee_name - Name of the user or role to whom privilege is to be granted.

consumer_group - Name of consumer group.
grant_option - TRUE if grantee should be dlowed to grant access, FALSE
otherwise.

Usage Notes

1. If you grant permisson to switch to a particular consumer group to a user, then that
user can immediately switch their current consumer group to the new consumer
group.

2. If you grant permission to switch to a particular consumer group to arole, then any
users who have been granted that role and have enabled that role can immediately
switch their current consumer group to the new consumer group.

3. If you grant permission to switch to a particular consumer group to PUBLIC, then
any user can switch to that consumer group.

4. If the grant_option parameter is TRUE, then users granted switch privilege for the
consumer group may aso grant switch privileges for that consumer group to others.

5. Inorder to st the initid consumer group of a user, you must grant the switch
privilege for that group to the user.

Syntax of the REVOKE SWITCH CONSUMER GROUP Procedure:

The REVOKE_SWITCH_CONSUMER_GROUP procedure revokes the ability of a user
to switch their resource group.

DBMS_RESOURCE_MANAGER PRI VS. REVOKE_SW TCH_CONSUMER_GROUP (
revokee_name I N VARCHARZ,
consuner _group | N VARCHAR?2) ;

Where:
revokee_name - Name of user/role from which to revoke access.
consumer_group - Name of consumer group.

Usage Notes

1. If yourevoke auser's switch privilege for a particular consumer group, then any
subsequent attempits by that user to switch to that consumer group will fail.

2. If yourevoketheinitia consumer group from auser, then that user will automaticaly
be part of the DEFAULT_CONSUMER_GROUP (OTHERS) consumer group when
logging in.

3. If you revoke the switch privilege for a consumer group from arole, then any users
who only had switch privilege for the consumer group viathet role will not be
subsequently able to switch to that consumer group.

4. If you revoke the switch privilege for a consumer group from PUBLIC, then any
users who could previoudy only use the consumer group via PUBLIC will not be
subsequently able to switch to that consumer group.

Section Summary

By carefully planning your resource dlocation into plans and resource groups a multi-tier
resource alocation plan can be quickly developed. By alocating CPU resources you can
be sure that processing power is concentrated where it needs to be such that the CEO ian't
waiting on a sub-clerk's process to finish before they get their results.

This section has shown how to use the various DBM S packages to configure and
maintain a resource plan with its associated consumer groups.

Presentation Summary

In this presentation we have looked at noncode related Oracle tuning for application
where dteration of source code is not dlowed. We have looked at physica and internds
tuning, indexing options, table and index tuning as well as methods for placing “ stedth
hints” into code.

This paper contains excerpts from the book: "Oracle8i Administration and
Management”, Michad R. Ault, John Wiley and Sons publishing with permission.

