

WITHIN YOU AND ABOUT YOU: GETTING STARTED
WITH INTERMEDIA TEXT
Carol Brennan, Comedy Central
Douglas Scherer, Core Paradigm

Introduction

Oracle8i’s interMedia Text provides a set of methods and extensions to standard SQL that can be used for searching text and
documents. Unlike Oracle ConText, an add-on product available with Oracle7, interMedia Text fully integrates most search-
related tasks into the familiar database environment. With it, effective searches through SQL queries become possible, and
index creation and management becomes more intuitive.

This document explores, with the aid of examples, all of the steps involved in building an interMedia Text search-enabled
database. It will provide general considerations for table creation, methods for loading data into tables, tasks involved with
creating text indexes on tables, examples of search queries, and issues surrounding text index maintenance. Special attention
will be paid to the use of large objects (LOBs) as it relates to document management for the purpose of searching.

Creating and Loading Database Tables

When preparing to use interMedia Text, table creation and loading is done no differently than it would be for any other table;
it follows that implementing interMedia Text searches on existing data is a straightforward process. The processes of table
creation and population will not be examined fully here, although the following notes are relevant to our discussion of
interMedia Text:
• In order to build an interMedia Text Index (which will be discussed in the next section), the table must have a primary

key.
• Any valid table loading method may be used to insert data into a table which is to be the basis of a text search. This

would generally consist of a standard INSERT statement; if the table contains a LOB column, then components of the
DBMS_LOB package would also be necessary to the process. SQL*Loader can also be used to bulk-load data, and the
Oracle EXPORT/IMPORT utilities can be used for migrating the data from another schema.

Example

Suppose we wish to create a searchable table of cooking recipes. One may build this table with the following statement:

CREATE TABLE recipes (
 id NUMBER NOT NULL PRIMARY KEY,
 name VARCHAR2(100) NOT NULL,
 prep_time_minutes NUMBER,
 servings NUMBER,
 description VARCHAR2(1000),
 html_page CLOB DEFAULT EMPTY_CLOB());

For simplicity, we will assume in subsequent examples that this table has been created and contains data.

Creating Text Indexes

Given that a database table exists and has a primary key defined, it can be made interMedia Text -searchable through the
creation of a special index. This type of index will be referred to as a text index or an interMedia Text index for the remainder
of this document, in order to avoid confusing it with standard Oracle indexes.

The syntax for creating a text index is as follows:

 CREATE INDEX <index_name>
 ON <table_name> (<column_name>)
 INDEXTYPE IS CTXSYS.CONTEXT;

The resultant index exists for the exclusive use of interMedia Text in performing search queries; it does not eliminate any
need for standard indexing. It differs fundamentally from a standard index in the fact that it provides a means of locating
documents based on searches of their contents, unlike standard indexes which provide fast access to record contents via a
pointer to the record itself. Because of this distinction, interMedia Text indexes are often referred to as “inverted” indexes.

The following rules govern the creation of text indexes:
• A text index can only be defined on one table column; composite text indexes are not permitted. However, text indexes

on multiple columns of one table are allowed.
• Unlike a standard index, if an error occurs during the creation of a text index, the index is still created and must, in most

cases, be dropped before making another creation attempt.

Stages of Index Creation

The process of index creation actually consists of four classes of activities, which occur in sequential order and which are all
customizable.

Stage 1: Datastore

In this stage, the storage specifics for the text being indexed are specified. For example, the physical location of the data (i.e.
external files or within the database itself) is determined.

Stage 2: Filter

Next, the output of the previous step (the data itself) is filtered as specified. For example, if the data exists externally in a
Microsoft Word document, it can be parsed into plain text, HTML, or XML in this step.

Stage 3: Section

Here, the output of the previous step (the filtered data) is broken down into groups according to the definition of section
groups and sections. This will be useful later when we are running queries against the indexed data, as it will allow us to
restrict returned records that contain certain words or phrases within specific sections only, through the use of the WITHIN
clause. (Implicitly, all documents have “paragraph” and “sentence” sections.)

Stage 4: Lexer

Finally, the text returned from the previous step is split into words, based upon the lexical standards of the language being
used.

Each of these classes have parameters (objects) which can be defined explicitly. Defaults exist in the CTX_PARAMETERS
view.

Example

To continue the example we began above: the following statements will create indexes on several useful fields within the
RECIPES table:

 CREATE INDEX recipe_name_index

 ON recipes (name)
 INDEXTYPE IS CTXSYS.CONTEXT;

 CREATE INDEX recipe_desc_index
 ON recipes (description)
 INDEXTYPE IS CTXSYS.CONTEXT;

 CREATE INDEX recipe_html_index
 ON recipes (html_page)
 INDEXTYPE IS CTXSYS.CONTEXT;

Note that, in the example, we have accepted the defaults for all index creation classes. Text index creation is customizable by
using preferences. More information on preferences can be found in the document “Oracle8i interMedia Text 8.1.5 –
Technical Overview” avaliable at
http://technet.oracle.com/sample_code/products/intermedia//htdocs/text_samples/imt_815_techover.html

Performing Queries Against Indexed Text

With an interMedia Text index in place, the data is prepared for text queries. These queries are reasonably simple to
construct, as they are exactly like standard SQL queries, with several new functions used mainly within WHERE clauses.

In the following discussion, the CONTAINS clause, which enables the most basic type of text query, will be explored. Two
other clauses used in more sophisticated queries, WITHIN and ABOUT, will also be discussed.

CONTAINS Clause

The CONTAINS clause is used to match an exact word or phrase, or a combination of exact words or phrases, to the contents
of a text field. The following are several basic variations on the CONTAINS clause; there are, however, many others
available.

Single-Word Match

The simplest form of the CONTAINS clause matches one word to text, as in this example:

 SELECT id
 FROM recipes
 WHERE CONTAINS(description, 'bean') > 0;

This query will return rows for which the DESCRIPTION field contains the word “bean”. The second argument to the
CONTAINS function can be no more than 2000 characters long. It returns a number corresponding to the strength of the
match for each record (“0” indicates no match). Note that text searches are not case sensitive.

Phrase Match

Using the same syntax, the CONTAINS clause can also be used to search for a phrase:

 SELECT id
 FROM recipes
 WHERE CONTAINS(description, 'black bean soup') > 0;

Note that this query will only return records for which the complete phrase “black bean soup” is present in the
DESCRIPTION field.

Match Containing Boolean Operators

The Boolean operators AND, OR, and NOT can be used to combine words and/or phrases within a CONTAINS clause.
Standard operator precedence applies.

 SELECT id
 FROM recipes
 WHERE CONTAINS(description, '(bean AND soup) OR rice') > 0;

 SELECT id
 FROM recipes
 WHERE CONTAINS(description, 'bean NOT soup') > 0;

As illustrated in the second example above, in this case, the NOT operator is a not considered a unary operator as it often is;
in this example, it corresponds to the English phrase “bean but not soup”.

Weighted Match

Within a CONTAINS clause, search terms can be assigned different weights:

 SELECT id
 FROM recipes
 WHERE CONTAINS(description, '(bean*2) AND rice') > 0;

In this example, the result set will include records for which the DESCRIPTION field contains both “bean” and “rice”.
However, documents containing “bean” will weighed twice as heavily as those containing “rice”. As a result, documents
containing “bean” will be more likely to have a higher score. This is relevant to our discussion of sorting by score, which
appears as the next topic.

Scoring and Sorting

As eluded to earlier, the CONTAINS clause returns a value that corresponds to the strength of the match. This value, or
score, can be used to sort query results, as illustrated in the following example:

 SELECT id
 FROM recipes
 WHERE CONTAINS(description, 'bean', 1) > 0
 ORDER BY SCORE(1) DESC;

As illustrated, the CONTAINS clause must contain a new numerical argument that corresponds to the argument for SCORE
in the ORDER BY clause. Any number can be used, but it must be the same both inside and outside of the CONTAINS
argument list. (Note that, here, SCORE(1) could also have been included in the list of SELECTed values.)

Complex Queries

All of the examples thus far have consisted of CONTAINS used within very simple queries. However, CONTAINS can also
be used in more complex situations, as illustrated in the following examples:

 SELECT id
 FROM recipes
 WHERE CONTAINS(name, 'vegetarian') > 0
 AND id NOT IN (SELECT id
 FROM recipes
 WHERE CONTAINS(description, 'microwave') > 0);

Here, CONTAI NS is used within a subquery. It can also be called from within PL/SQL, and from within certain DML
statements (e.g. “INSERT AS SELECT…”).

 CREATE OR REPLACE VIEW quick_rice_recipes AS
 SELECT *

 FROM recipes
 WHERE CONTAINS(description, 'rice') > 0
 AND prep_time_minutes <= 20;

As illustrated, CONTAINS can also be called from within a view definition.

WITHIN Clause

If documents’ sections are properly defined, as discussed earlier in this document under index creation, then searches can be
restricted to certain sections within documents using the WITHIN clause.

As a simple example, suppose that, for each of our recipe records, the HTML_PAGE field consists of an HTML document
instead of plain text. As an HTML document, it contains logical sections as defined by pairs of tags, such as title (defined by
“<TITLE>…</TITLE>”), body text (defined by <BODY>…</BODY>), and so forth. Using these sections, we can run
queries such as:

 SELECT id
 FROM recipes
 WHERE CONTAINS(html_page, 'stew WITHIN title') > 0;

The power of WITHIN can be more fully exploited if XML is used; in this case, the document will contain specialized tags in
addition to the formatting tags provided with plain HTML. Each set of tags can be defined as a section, and targeted
WITHIN queries can then be executed against the data. (The reader is referred to reference information on defining sections
– specifically, specifying section groups and sections.)

For more information about XML, see any of the excellent XML resources on the Web. For a concise introduction to XML
and its use of tagged fields, see “Get Up to Speed with XML” by Boris Feldman, available at
http://www.xmlmag.com/upload/free/features/xml/1999/01win99/bfwin99/bfwin99.asp

ABOUT Clause

ABOUT queries are used to search for documents containing words with a similar meaning, or having a similar theme , as the
search term. The syntax is illustrated in the following example:

 SELECT id
 FROM recipes
 WHERE CONTAINS(description, 'about(bean)') > 0;

This query would return records with the word “bean” in the DESCRIPTION field, as well as those containing other
recognized forms of the word “bean”. By default, this is based on the built-in thesaurus that comes with interMedia Text.

The standard thesaurus can be expanded, however, for use with a particular database, as illustrated in the following example:

Example

Suppose that our recipe database is run by a company marketing bean and soup products. It would be desirable for searches
to return records for which the text contains the company’s products identified by name, in addition to those containing the
search word. Perhaps the company also wishes to make their search facility usable to persons searching on foreign-language
terms. In this case, a custom thesaurus could be built.

First, a text file similar in format to the following would be created:

bean
 syn garbanzo
 syn legume
 syn acme hearty has-beens
soup

 syn stew
 syn broth
 syn acme liquefied legumes
 syn acme pulverized has-beens
 italian: zuppa
 spanish: sopa
…

Notice that, in this text file, we have defined several synonyms for the words “bean” and “soup”, and that we have identified
some foreign-language equivalents for the word “soup”.

After this file is created (assume, for this example, that it is named mythes.txt), it must be loaded into the database using the
CTXLOAD facility:

From the OS command line:
 ctxload –user ctxsys/ctxsys –thes –name mythes –file mythes.txt

Once it is loaded, the synonyms and foreign-language equivalents are available for use in ABOUT queries.

Maintaining Text Indexes

When indexed data changes, the corresponding text indexes are not updated automatically. Therefore, the index must
periodically be reset to correspond to the current state of its underlying data through a process called synchronization.
Several synchronization options exist, and one should be chosen based on the specific needs the database and its applications.

Immediate vs. Delayed Effects of DML

When a data manipulation (DML) statement is performed on indexed data, data is invalidated and/or added. interMedia Text
indexes will immediately reflect invalidations by not including then in any subsequent search result sets. However, addition
of new data is not immediately reflected in the appropriate text indexes, and will not be reflected until the next
synchronization. Therefore, the effect of each type of DML statement is as follows:

INSERT: The inserted document will not be included in any search results until after the next synchronization.

UPDATE: The old version of the document is immediately excluded from search results, and the new version of the
document will not be included in any search results until after the next synchronization.

DELETE: The document is immediately excluded from search results.

Manual Text Index Synchronization

To synchronize a text index and its underlying data, the index can be manually synchronized using the following command:

 ALTER INDEX <index_name> REBUILD [PARAMETERS ('SYNC')];

The “PARAMETERS(‘SYNC’)” clause causes synchronization of only the indexed records that have changed since the last
rebuild. Without this clause, the entire index will be rebuilt, which will take much longer; in this case, the “REBUILD”
syntax is the same as for a standard Oracle index.

Example

ALTER INDEX recipe_desc_index REBUILD PARAMETERS ('SYNC');

ALTER INDEX recipe_desc_index REBUILD;

Automatic Text Index Synchronization

If a text -indexed table experiences a significant amount of DML, and business requirements dictate that changes must be
reflected in search results on a timely basis, then manual text index synchronization may not be a viable option. Therefore,
several methods exist for automatically synchronizing interMedia Text indexes.

CTXSRV

CTXSRV, a utility that is provided as part of interMedia Text, can be set to run as a background process to repeatedly
synchronize text indexes. Depending on its configuration, it can synchronize indexes as often as once every few seconds. It
should be noted that, because of the way it operates, CTXSRV causes significant fragmentation within text indexes.

DBMS_JOB or Cron

DBMS_JOB can be used to schedule the automatic execution of an “ALTER INDEX REBUILD PARAMETERS (‘SYNC’)”
statement. (On UNIX, a script performing a similar function can be set to execute via cron.)Oracle Enterprise Manager

Index synchronization can be run within the Oracle Enterprise Manager Job Queue.

Summary

Oracle8i’s interMedia Text makes it possible to perform text queries on database fields. It provides methods for building
indexes on text data as well as an extensive set of SQL extensions for querying the indexed data. It includes utilities for
keeping text indexes synchronized with their underlying data sets. Finally, interMedia Text allows for customized extension
of its standard search capabilities, including definable document sections and extendable thesauri.

About the Authors

Carol Brennan is a Database Administrator and Senior Technical Analyst at Comedy Central. She is a Technical Editor of
the Oracle PL/SQL Interactive Workbook and the Oracle DBA Interactive Workbook , both published by Prentice Hall. She is
an instructor for the Computer Technology and Applications Program at Columbia University and an Oracle8 Certified
Database Administrator.
carol.brennan@comedycentral.com

Douglas Scherer (Oracle7 and Oracle8 Certified – Chauncey and OCP) is president of Core Paradigm - providing guidance,
consulting, and formal training solutions. He is a frequent speaker at international conferences, corporations and user-group
meetings and has appeared in Visions of the New Millennium, a series seen on PBS and its affiliates. He is lead author of
Oracle 8i Tips & Techniques published by Osborne McGraw-Hill (Oracle Press), and co-author of the Oracle DBA
Interactive Workbook and Complete Video Course both published by Prentice Hall. He chaired the database track at
Columbia University's Computer Technology and Applications (CTA) program for three years and is currently the database
track's curriculum advisor. His column on Oracle's interMedia services appears in Oracle Magazine.
dscherer@corparadigm.com

